Core Journal of Peking University

Excellent Sci-Tech Journal of Chinese Universities

Journal of Committee of Deep Space Exploration Technology, Chinese Society of Astronautics(CDSET-CSA)

Advanced Search
Turn off MathJax
Article Contents

YU Jinfei, ZHAO Haibin, WU Yunzhao. Spectroscopic Study of Aqueous Alteration of Asteroids Based on Carbonaceous Chondrites[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20220077
Citation: YU Jinfei, ZHAO Haibin, WU Yunzhao. Spectroscopic Study of Aqueous Alteration of Asteroids Based on Carbonaceous Chondrites[J].Journal of Deep Space Exploration.doi:10.15982/j.issn.2096-9287.2022.20220077

Spectroscopic Study of Aqueous Alteration of Asteroids Based on Carbonaceous Chondrites

doi:10.15982/j.issn.2096-9287.2022.20220077
  • Received Date:2022-08-19
  • Rev Recd Date:2022-10-25
  • Available Online:2022-11-23
  • The aqueous alteration spectral features of carbonaceous chondrites for were studied for future volatile-rich asteroids exploration and remote sensing. The 1-20 μm infrared spectral features and petrographic characteristics of 15 carbonaceous chondrites with different alteration degrees were analyzed, and the spectral variation laws of the aqueous alteration were summarized. The findings demonstrate that as the degree of alteration of carbonaceous chondrites increases, the 3 μm absorption band, which indicates phyllosilicates and water molecules, and the 6 μm absorption band, which indicates only water molecules, both features increasing in strength and absorption centers shift to the short-wave. With more alteration, the 3 μm absorption band sharpens and resembles serpentine’s 3 μm absorption feature. However, as the degree of alteration increases, the 6 μm absorption band shape does not significantly change. The degree of alteration also affects the spectral shape of the 10-13 μm region. This region indicates silicate features. The 12.4 μm /11.4 μm reflectance ratio reduces as a result of the conversion of anhydrous silicates to phyllosilicates. Also discuss possible effects that the spectra and parameters discovered during this study may have on the outcomes from asteroids.
  • • Analysis of the NIR-MIR spectral variation laws of aqueous alteration. • A series of carbonaceous chondrites reflecting the sequence of the degree of aqueous alteration were selected for spectroscopic study. • Revealed the connection between spectral features variations and petrological characteristics.

  • [1]
    BATES H C, KING A J, HANNA K L D, et al. Linking mineralogy and spectroscopy of highly aqueously altered CM and CI carbonaceous chondrites in preparation for primitive asteroid sample return[J]. 2020, 1(71-101): 25.
    [2]
    DEMEO F E,BINZEL R P,SLIVAN S M,et al. An extension of the Bus asteroid taxonomy into the near-infrared[J]. Icarus,2009,202(1):160-180. doi:10.1016/j.icarus.2009.02.005
    [3]
    GEHRELS T. Asteroids III[M]. Tucson, AZ: University of Arizona Press, 2002.
    [4]
    AMELIN Y,KROT A N,HUTCHEON I D,et al. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions[J]. Science,2002,297(5587):1678-1683. doi:10.1126/science.1073950
    [5]
    BINZEL R P, GEHRELS T, MATTHEWS M S. Asteroids II[M]//Asteroids II. 1989[2022-08-29].https: //ui.adsabs.harvard.edu/abs/1989aste.conf.....B.
    [6]
    ALEXANDER C M O,BOWDEN R,FOGEL M L,et al. The provenances of asteroids,and their contributions to the volatile inventories of the terrestrial planets[J]. Science,2012,337(6095):721-723. doi:10.1126/science.1223474
    [7]
    BECK P. Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids[J]. Geochimica et Cosmochimica Acta,2010,74(16):4881-4892. doi:10.1016/j.gca.2010.05.020
    [8]
    TAKIR D, EMERY J P, MCSWEEN H Y, et al. Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites[J/OL]. Meteoritics & Planetary Science, 2013: 48(9), 1618-1637.
    [9]
    BECK P,GARENNE A,QUIRICO E,et al. Transmission infrared spectra (2–25 lm) of carbonaceous chondrites (CI,CM,CV-CK,CR,C2 ungrouped): mineralogy,water,and asteroidal processes[J]. Icarus,2014,229:263-277. doi:10.1016/j.icarus.2013.10.019
    [10]
    GARENNE A. Bidirectional reflectance spectroscopy of carbonaceous chondrites:Implications for water quantification and primary composition[J]. Icarus,2016,264:172-183. doi:10.1016/j.icarus.2015.09.005
    [11]
    KING A J. Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy[J]. Earth,Planets and Space,2015,67:198.
    [12]
    RUSSELL C T,RAYMOND C A. The Dawn mission to Vesta and Ceres[J]. Space Science Reviews,2011,163(1):3-23.
    [13]
    LAURETTA D S,BALRAM-KNUTSON S S,BESHORE E,et al. OSIRIS-REx:sample return from Asteroid (101955) Bennu[J]. Space Science Reviews,2017,212(1):925-984.
    [14]
    TSUDA Y,YOSHIKAWA M,ABE M,et al. System design of the Hayabusa 2—asteroid sample return mission to 1999 JU3[J]. Acta Astronautica,2013,91:356-362. doi:10.1016/j.actaastro.2013.06.028
    [15]
    LEVISON H F, OLKIN C, NOLL K S, et al. Lucy: surveying the diversity of the trojan asteroids: the fossils of planet formation[C]//48th Annual Lunar and Planetary Science Conference. The Woodlands, Texas: [s. n. ]: 2017.
    [16]
    BECK P. What is controlling the reflectance spectra (0.35-150 µm) of hydrated (and dehydrated) carbonaceous chondrites?[J]. Icarus,2018,313:124-138. doi:10.1016/j.icarus.2018.05.010
    [17]
    GILMOUR C M, HERD C D K, BECK P. Water abundance in the Tagish Lake meteorite from TGA and IR spectroscopy: evaluation of aqueous alteration[J]. 2019, 54: 22.
    [18]
    CLARK R N. Detection of adsorbed water and hydroxyl on the Moon[J]. Science,2009,326(5952):562-564. doi:10.1126/science.1178105
    [19]
    LI S,LUCEY P G,MILLIKEN R E,et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(36):8907-8912. doi:10.1073/pnas.1802345115
    [20]
    MILLIKEN R E,MUSTARD J F. Estimating the water content of hydrated minerals using reflectance spectroscopy II. effects of particle size[J]. Icarus,2007,189(2):550-573. doi:10.1016/j.icarus.2007.02.017
    [21]
    MILLIKEN R E,MUSTARD J F. Estimating the water content of hydrated minerals using reflectance spectroscopy I. effects of darkening agents and low-albedo materials[J]. Icarus,2007,189(2):550-573. doi:10.1016/j.icarus.2007.02.017
    [22]
    SIMON A A, KAPLAN H H, HAMILTON V E, et al. Widespread carbon-bearing materials on near-Earth asteroid (101955) Bennu[J]. Science : 2020, 370(6517): eabc3522.
    [23]
    DUAN A,WU Y,CLOUTIS E A,et al. Heating of carbonaceous materials:insights into the effects of thermal metamorphism on spectral properties of carbonaceous chondrites and asteroids[J]. Meteoritics & Planetary Science,2021,56(11):2035-2046.
    [24]
    HONNIBALL C I. Molecular water detected on the sunlit Moon by SOFIA[J]. Nature Astronomy,2021,5(2):121-127. doi:10.1038/s41550-020-01222-x
    [25]
    BATES H C,HANNA K L D,KING A J,et al. A spectral investigation of aqueously and thermally altered CM,CM‐An,and CY chondrites under simulated asteroid conditions for comparison with OSIRIS‐REx and Hayabusa2 observations[J]. Journal of Geophysical Research,2021,126(7):e2021JE006827.
    [26]
    RUBIN A E,TRIGO-RODRÍGUEZ J M,HUBER H,et al. Progressive aqueous alteration of CM carbonaceous chondrites[J]. Geochimica et Cosmochimica Acta,2007,71(9):2361-2382. doi:10.1016/j.gca.2007.02.008
    [27]
    HOWARD K T,BENEDIX G K,BLAND P A,et al. Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). part 1:total phyllosilicate abundance and the degree of aqueous alteration[J]. Geochimica et Cosmochimica Acta,2009,73(15):4576-4589. doi:10.1016/j.gca.2009.04.038
    [28]
    MILLIKEN R E, HIROI T, PATTERSON W. The NASA Reflectance Experiment Laboratory (RELAB) facility: past, present, and future[C]// 47th Annual Lunar and Planetary Science Conference. The Woodlands, Texas: NASA, 2016.
    [29]
    CLOUTIS E A,HUDON P,HIROI T,et al. Spectral reflectance properties of carbonaceous chondrites:2. CM chondrites[J]. Icarus,2011,216(1):309-346. doi:10.1016/j.icarus.2011.09.009
    [30]
    MCADAM M M. Aqueous alteration on asteroids:Linking the mineralogy and spectroscopy of CM and CI chondrites[J]. Icarus,2015,245:320-332. doi:10.1016/j.icarus.2014.09.041
    [31]
    BROWNING L B,MCSWEEN H Y,ZOLENSKY M E. Correlated alteration effects in CM carbonaceous chondrites[J]. Geochimica et Cosmochimica Acta,1996,60(14):2621-2633. doi:10.1016/0016-7037(96)00121-4
    [32]
    BROWNING L,MCSWEEN JR. H Y,ZOLENSKY M E. On the origin of rim textures surrounding anhydrous silicate grains in CM carbonaceous chondrites[J]. Meteoritics & Planetary Science,2000,35(5):1015-1023.
    [33]
    LEBOFSKY L A. Infrared reflectance spectra of asteroids :a search for water of hydration.[J]. The Astronomical Journal,1980,85:573-585. doi:10.1086/112714
    [34]
    RIVKIN A S,DAVIES J K,JOHNSON J R,et al. Hydrogen concentrations on C-class asteroids derived from remote sensing[J]. Meteoritics & Planetary Science,2003,38(9):1383-1398.
    [35]
    TAKIR D,EMERY J P. Outer Main Belt asteroids:Identification and distribution of four 3-μm spectral groups[J]. Icarus,2012,219(2):641-654. doi:10.1016/j.icarus.2012.02.022
    [36]
    HOWELL E, RIVKIN A, SODERBERG A, et al. Aqueous alteration of asteroids: correlation of the 3 μm and 0.7 μm hydration bands[J]. 1999, 31: 1074.
    [37]
    CAMPINS H,HARGROVE K,PINILLA-ALONSO N,et al. Water ice and organics on the surface of the asteroid 24 Themis[J]. Nature,2010,464(7293):1320-1321. doi:10.1038/nature09029
    [38]
    BECK P,QUIRICO E,SEVESTRE D,et al. Goethite as an alternative origin of the 3.1 μm band on dark asteroids[J]. Astronomy & Astrophysics,2011,526:A85.
    [39]
    VILAS F. A cheaper,faster,better way to detect water of hydration on solar system bodies[J]. Icarus,1994,111(2):456-467. doi:10.1006/icar.1994.1156
    [40]
    KITAZATO K,MILLIKEN R E,IWATA T,et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy[J]. Science,2019,364(6437):272-275. doi:10.1126/science.aav7432
    [41]
    GALIANO A,PALOMBA E,D’AMORE M,et al. Characterization of the Ryugu surface by means of the variability of the near-infrared spectral slope in NIRS3 data[J]. Icarus,2020,351:113959. doi:10.1016/j.icarus.2020.113959
    [42]
    KITAZATO K,MILLIKEN R E,IWATA T,et al. Thermally altered subsurface material of asteroid (162173) Ryugu[J]. Nature Astronomy,2021,5(3):246-250. doi:10.1038/s41550-020-01271-2
    [43]
    HAMILTON V E,SIMON A A,CHRISTENSEN P R,et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu[J]. Nature Astronomy,2019,3(4):332-340. doi:10.1038/s41550-019-0722-2
    [44]
    YOKOYAMA T, NAGASHIMA K, NAKAI I, et al. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites[J]. Science, https: //www.science.org/doi/10.1126/science.abn7850.
  • 加载中
通讯作者:陈斌, bchen63@163.com
  • 1.

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(126) PDF downloads(0)Cited by()

Proportional views
Related

Spectroscopic Study of Aqueous Alteration of Asteroids Based on Carbonaceous Chondrites

doi:10.15982/j.issn.2096-9287.2022.20220077

    Abstract:The aqueous alteration spectral features of carbonaceous chondrites for were studied for future volatile-rich asteroids exploration and remote sensing. The 1-20 μm infrared spectral features and petrographic characteristics of 15 carbonaceous chondrites with different alteration degrees were analyzed, and the spectral variation laws of the aqueous alteration were summarized. The findings demonstrate that as the degree of alteration of carbonaceous chondrites increases, the 3 μm absorption band, which indicates phyllosilicates and water molecules, and the 6 μm absorption band, which indicates only water molecules, both features increasing in strength and absorption centers shift to the short-wave. With more alteration, the 3 μm absorption band sharpens and resembles serpentine’s 3 μm absorption feature. However, as the degree of alteration increases, the 6 μm absorption band shape does not significantly change. The degree of alteration also affects the spectral shape of the 10-13 μm region. This region indicates silicate features. The 12.4 μm /11.4 μm reflectance ratio reduces as a result of the conversion of anhydrous silicates to phyllosilicates. Also discuss possible effects that the spectra and parameters discovered during this study may have on the outcomes from asteroids.

    YU Jinfei, ZHAO Haibin, WU Yunzhao. Spectroscopic Study of Aqueous Alteration of Asteroids Based on Carbonaceous Chondrites[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20220077
    Citation: YU Jinfei, ZHAO Haibin, WU Yunzhao. Spectroscopic Study of Aqueous Alteration of Asteroids Based on Carbonaceous Chondrites[J].Journal of Deep Space Exploration.doi:10.15982/j.issn.2096-9287.2022.20220077
    WeChat followshare

    Top

    Catalog

      /

      Return
      Return
        Baidu
        map