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________________________________________________________________ 

Abstract 

Electrification is advocated by both academics and the Chinese government to control air 

pollution and promote productivity. However, the problem remains to be solved of how to 

achieve the trade-off between reducing CO2 emissions and maintaining economic growth when 

switching from various fuels to electricity under the policy support. In view of this, after 

analyzing the effects of exogenous shocks in various fuel demands based on impulse response 

functions of several vector autoregression models, this paper measures the current and long-

term impacts of electrification on GDP and CO2 emissions. Finally, some typical cases of 

replacement of fossil-fueled appliances by electrical counterparts encouraged by the 

government are assessed. The main findings are: (1) Almost all of the exogenous shocks in fuel 
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demands have positive effects on both GDP and CO2 emissions, while the gas shock has a 

slightly negative effect on GDP; (2) Carbon intensity decreases and even CO2 emission 

reductions with increased GDP are potentially achieved, in both current and permanent periods, 

for coal-electricity and oil-electricity switching, while gas-electricity switching is not a wise 

choice in view of CO2 emission reduction in the long run; (3) The alternative electric appliances 

for electrification have very different impacts on CO2 emission reduction. 



Keywords: Fuel-switching; Inter-fuel substitution; Electrification; CO2 emissions; 

Economic growth. 

_____________________________________________________________________

______ 

1. Introduction 

As a highly ordered form of energy with low entropy, electricity can be converted 

to useful work to a large extent. Electrical equipment and appliances tend to have 

significant efficiency advantages compared with their conventional counterparts fueled 

by fossil fuels, even accounting for efficiency losses in the delivery of electric power 

(Gellings and Yau, 1991). Electricity’s high-energy density and precise control offer 

industries fast throughput, which reduces unit costs by spreading the costs of production 

factors over a larger production volume (Collard et al., 2004; Gellings, 2011). In 

addition, electricity is clean at the point of use, since its use involves no fumes or 

residues. Because of these efficiency and environmental reasons, electrification is an 

important fuel-switching measure to promote productivity and control air pollution. 

As the largest energy consumer in the world, China2 faces serious air pollution 

problems, such as smog appearing in many cities—mainly caused by coal burning and 

exhaust emissions of motor vehicles—while industrialization and urbanization are still 

rapidly advancing in the country. Although the share of electricity in final energy 

consumption has risen steadily, from 6.88% in 1980 to 20.86% in 2014, there is still 

considerable direct combustion of fossil fuels, especially coal products, in China (see 

Fig. 1). To reduce reliance on fossil fuels in end-use, the Chinese government has 

introduced a series of measures in some policy documents for the purpose of 

                                                            
 

 

 

 

 

2 China specifically refers to the Chinese Mainland in this paper. 



 

encouraging electrification; these measures include increasing the proportion of coal 

for electricity generation (National Development and Reform Commission, 2004), 

accelerating railway electrification (National Development and Reform Commission et 

al., 2006), and incentivizing new energy vehicle (NEV3) adoption (The State Council, 

2012). Following the state-owned State Grid, the largest electric utility in the world, 

which has actively promoted the substitution of electricity for fossil fuels since 2013 

(State Grid, 2013), the Chinese government has provided comprehensive policy support 

for this substitution since 2016. The support covers numerous fields, such as residential 

heating, transportation, and industrial and agricultural production (National 

Development and Reform Commission, 2016a). 

                                                            
 

 

 

 

 

3 Here, NEVs largely include all-electric vehicles, plug-in hybrid electric vehicles, and fuel-cell vehicles. 
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1.  Includes raw coal, washed coal and briquettes. 

2.  Includes coke oven gas, blast furnace gas, converter gas, etc. 

3.  Includes crude oil, gasoline, kerosene, diesel oil and fuel oil. 

4.  Includes LPG and other refinery gas. 

5.  Includes LNG and other natural gas. 

6.  Includes naphtha, lubricants, paraffin waxes, white spirit, bitumen asphalt and petroleum coke, which are 

primarily used for non-energy purposes. 

Fig. 1. China total final consumption (TFC) from 1980 to 2014 by fuel, and fuel shares in 1980 

and 2014 (Mtce: million tonnes of coal equivalent). Data source: China Energy Statistical 

Yearbook. 

 

However, despite its efficiency and cleanliness, China’s electricity is mainly from 

fossil fuels, which accounted for 74.82% of electricity generation in 2014 according to 

the World Development Indicators (WDI) databank. Especially, coal accounted for 

72.63%. Even if the Chinese government’s 2020 renewable electricity generation target 

of 27% of electricity generation from renewable sources (National Development and 

Reform Commission, 2016b) is achieved, the dominance of fossil fuel power will not 

be changed. Thus, the potential impacts on CO2 emissions of fuel-switching for 

electrification are unclear, as yet. Meanwhile, global awareness of the issue of global 
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warming is increasing, and China has committed to reducing greenhouse gas emissions 

to tackle this issue (Wang et al., 2016; Zhao et al., 2016). Several legal instruments 

have been successively ratified within the United Nations Framework Convention on 

Climate Change (UNFCCC); these include the Kyoto Protocol in 1997, the Doha 

Amendment to the Kyoto Protocol in 2012, and the Paris Agreement in 2015. Although 

the efficiency advantages of much electrical equipment and appliances may save 

primary energy and hence reduce emissions, not all appliances have these advantages. 

Furthermore, fuel-switching activity may indirectly set off a chain reaction of 

substitution and compensation between fuels, and even other production factors, which 

is often accompanied by industrial structural effects (Pereira and Pereira, 2010; 

Steenhof, 2006). This will have a dynamic effect on future economic growth and energy 

use and further affect either the carbon intensity or the absolute amount of CO2 

emissions. Thus, the dynamic effect on future CO2 emission reduction of shifting final 

energy consumption to electricity is still a core issue for policy analysis. 

Nevertheless, energy plays an important role in the national economy and drives 

almost all the socio-economic activities (Jr. et al., 2013; Lin et al., 2016; Tang et al., 

2017). As key economic sectors, the energy sectors also contribute a large part of the 

overall economy. Due to its heavy dependence on energy, China would be profoundly 

affected by changes in the final energy consumption mix, especially when the changes 

involve electricity, which is very important for both the national economy and the 

livelihoods of the population (Yuan et al., 2008; Zhao et al., 2014). Accordingly, in 

addition to CO2 emissions, the effects on economic growth of changes in each type of 

fuel demand and their being shifted to electricity should be assessed. After all, we do 

not want to reduce emissions at the expense of the economy. To sum up, this study aims 

to address the following specific questions: 

(1) How do changes in each type of fuel demand dynamically affect GDP and CO2 

emissions in the future? 

(2) What are the ideal fuel-switching states for electrification to achieve the trade-off 

between CO2 emission reduction and economic growth maintenance? 

(3) Can the current fuel-switching policies for electrification not only reduce CO2 

emissions but also maintain economic growth? 

The main contribution to answering these three questions is reflected in several 

aspects: providing a quantitative decision-making foundation to promote switching 

from various non-electric fuels to electricity; helping to correct the economic forecasts, 
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taking account of electrification policies; and calling on the climate change community 

to pay attention to the impacts of electrification policies on CO2 emissions, even if these 

policies have some obvious advantages in controlling conventional air pollution, such 

as smog. 

Since electrification is a kind of fuel-switching, we have reviewed the literature 

on impacts of fuel-switching, and we have found that the current studies mainly focus 

on two categories. 

The first category regards fuel-switching as a factor influencing CO2 emissions 

and measures its contribution by either index decomposition analysis (IDA) or 

econometric models. (Freitas and Kaneko, 2011) focuses on energy switching in Brazil, 

and the results from logarithmic mean Divisia index (LMDI) indicate that the 

transformation of the energy mix to cleaner sources is one of the main factors 

contributing to emissions’ reduction. (Yuan et al., 2015) employs a new structural 

decomposition analysis (SDA) model to study indirect CO2 emissions from residential 

consumption in China and points out that transformation of the consumption ratio 

reduces indirect emissions in all regions. (Özbuğday and Erbas, 2015) uses a linear 

heterogeneous panel data model that involves the share of renewable energy 

consumption in total energy consumption, and the results demonstrate that substituting 

renewable energy for non-renewable energy reduces CO2 emissions in the long-run. 

The second category employs accounting methods to investigate the benefits of 

substitution between two certain fuels. (Hayhoe et al., 2002) considers the changes in 

emissions of CO2, CH4, SO2, and BC (black carbon) resulting from the substitution of 

natural gas for coal to evaluate the effects on global climate change, and concludes that 

higher temperatures will be produced initially, followed by a net decrease due to various 

contributions of these emissions in different periods. (Fuchigami et al., 2016) 

investigates the CO2 emission reduction benefit of bio-coke, which is used as an 

alternative fuel for coal-coke. 

Clearly, almost all the above-mentioned studies on the impacts of fuel-switching 

are from the standpoint of air pollution control and climate change mitigation, while 

ignoring the aggregate economic costs. In view of the importance of energy 

consumption and its mix for economic development, (Pereira and Pereira, 2010) uses 

some vector autoregressive (VAR) models and the corresponding impulse-response 

functions to estimate the long-term macroeconomic costs due to the reduction of each 



 

disaggregated final fuel demand and then evaluates the fuel-switching policy–induced 

abatement costs for CO2 emissions. In fact, depending on the dynamic interaction and 

feedback mechanism among the considered variables, VAR can quantitatively estimate 

the long-term effects of fuel-switching on the economic growth and CO2 emissions 

through simulating the aforementioned chain reaction of substitution and compensation 

between production factors. These long-term effect measurements provide more 

comprehensive policy-making information, rather than only focusing on the current 

effects of a fuel-switching policy. In view of this, this study also adopts VAR models 

to quantitatively estimate the impacts of switching from non-electric fuels to electricity. 

In addition, to fully estimate the changes in CO2 emissions, this study includes the 

variable of CO2 emissions into the VAR models to capture both the direct and indirect 

channels through which the production factors affect CO2 emissions. 

The rest of this paper is organized as follows: Section 2 describes the dataset used 

in this study, along with the data sources; Section 3 illustrates the model establishing 

process and the calculation methods of impact measurements; Section 4 presents the 

empirical results and discussions; and, finally, Section 5 concludes the paper and 

provides some policy implications. 

2. Data description 

This section describes the dataset used for model identifications and estimations 

in Section 3. Depending on the data availability, the required dataset includes annual 

observations of gross output, capital investment, and employment, as well as 

disaggregated final energy consumption and fossil-fuel carbon dioxide emissions from 

1980 to 2014 in China. Gross output is represented by real GDP (1980 constant price), 

from the National Bureau of Statistics of China, while fossil-fuel CO2 emission data are 

from the International Energy Agency (IEA). 

Data on disaggregated final energy consumption are collected from the China 

Energy Statistical Yearbook, as shown in Fig. 1. In view of the characteristics of 

substitution between different types of final energy consumption, we follow (Pereira 

and Pereira, 2010), in which coke is merged into coal, while gas includes various coal 

gases, refinery gases, and natural gases. As heating is regarded as a final consumption 

process, according to energy balance tables, heat is reversely assigned to corresponding 

fuels which generate it. Since the data on other energy are incomplete and “other” (see 
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Fig. 1) is primarily used for non-energy purposes, neither other energy nor “other” is 

considered in this study. In other words, the disaggregated final energy consumption 

includes coal, oil, gas, and electricity in this paper. 

Since the employment data from the National Bureau of Statistics of China exhibit 

an abnormal jump before and after 1989 due to the adjustment of statistical caliber, the 

labor force figures and the ratio of unemployment from WDI are collected, and the 

employment is calculated according to these. Capital investment is represented by gross 

capital formation at 1980 constant price, which are also calculated from related data of 

WDI. 

The collected data on capital investment, labor (employment), GDP, and fossil-

fuel CO2 emissions are shown in Fig. 2. Like the energy consumption shown in Fig. 1, 

these variables increase considerably over the studied period. For the sake of brevity, 

unless otherwise specified, I , L , Y , and FC  represent capital investment, labor, GDP, 

and fossil-fuel CO2 emissions, respectively, in this paper, while C , O , G , and E  

represent the consumption of coal, oil, gas, and electricity, respectively. For instance, 

ln tY  is just the GDP in log-level at time t . 
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Fig. 2. Variables on capital investment, labor, GDP and fossil-fuel CO2 emissions of China over 

the period of 1980-2014. 

3. Methodology 

Following the practice in (Pereira and Pereira, 2010), we will establish a vector 

autoregression (VAR) model for each type of fuel, which involves the variables on the 

focused fuel demand, capital investment, labor, and GDP. In particular, the variable on 

fossil-fuel CO2 emissions is also included in these VAR models to measure the effects 

on it in comprehensive frameworks. Then, with the help of impulse-response functions 

based on these VAR models, the effect-measuring formulas of fuel-switching activities 

from non-electric fuels to electricity are introduced. 

3.1. Unit root and cointegration analysis 

As preliminary work for VAR modelling, the stationary properties of variables 

contained in the models are tested first. The Augmented Dickey–Fuller (ADF) and 

Phillips–Perron (PP) unit root tests are employed, and the test results are shown in Table 

1, where the null hypothesis is that a unit root exists. As can be seen, the null hypothesis 

cannot be rejected at the 5% level of significance for all level variables. However, it 

can be rejected after these variables are differenced once, which suggests that the 1st 

differenced variables are stationary. Thus, these 1st differenced variables satisfy the 

precondition to establish VAR models. 

 

   Table 1 

    Results of ADF and PP tests for unit root. 

Variable 
ADF  PP 

Level 1st difference  Level 1st difference 

ln tY  -0.0151 -4.2744  -0.3641 -3.4248 
 (0.950) (0.002)  (0.904) (0.017) 

ln tI  -0.9914 -4.0689  -0.3128 -4.1050 
 (0.745) (0.003)  (0.913) (0.003) 

ln tL  7.9249 -3.5003  4.1579 -2.6762 
 (1.000) (0.001)  (1.000) (0.009) 

ln tC  1.4722 -2.0792  2.7220 -2.0772 
 (0.962) (0.038)  (0.998) (0.038) 

ln tO  0.8461 -6.0236  0.8120 -6.9081 
 (0.993) (0.000)  (0.993) (0.000) 

ln tG  0.9712 -6.3978  1.1935 -6.5837 
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 (0.995) (0.000)  (0.998) (0.000) 

ln tE  -0.3217 -3.0920  0.9303 -3.1616 
 (0.911) (0.037)  (0.995) (0.032) 

ln tFC  0.8420 -4.4934  0.7260 -4.5303 
 (0.993) (0.001)  (0.991) (0.001) 

Notes: For Labor and Coal, neither a constant nor a time trend is included in test 

equations, while a constant is included for the other variables. Values in parentheses 

indicate p-values. 

 

Considering that all the above-mentioned series are I(1) (integrated of order one), 

we also test for cointegration among these variables in log-levels, including each one 

of the fuel demands ( ln , { , , , }tP P C O G E ), capital investment ( ln tI ), labor ( ln tL ), 

GDP ( ln tY ), and fossil-fuel CO2 emissions ( ln tFC ). Here, the Engle–Granger test is 

employed, since it is less vulnerable than the Johansen test to the small sample (such as 

ours) bias toward finding cointegration when it does not exist (Gonzaloa and Leeb, 

1998; Pereira and Pereira, 2010). 

For each of the four VAR modeling procedures corresponding to each type of fuel, 

five different cases are tested, each of which considers a different endogenous variable 

in the cointegration regression. The results of these cointegration tests are shown in 

Table 2, where the p-values of t-statistics suggest that we cannot reject the null 

hypothesis of no-cointegration on balance. Therefore, we only study the short-run 

dynamic interactions among the 1st differenced variables in ordinary VAR models 

instead of long-run relationships in vector error correction models (VECM). 

 

Table 2 

Results of Engle-Granger tests for no-cointegration. 

Variable t-statistic Variable t-statistic Variable t-statistic Variable t-statistic 

ln tC  -3.4513 ln tO  -3.9419 ln tG  -2.8058 ln tE  -3.9750 

 (0.410)  (0.223)  (0.706)  (0.213) 

ln tI  -2.8697 ln tI  -3.8901 ln tI  -4.5070 ln tI  -4.0632 

 (0.678)  (0.239)  (0.096)  (0.189) 

ln tL  -2.9121 ln tL  -2.5376 ln tL  -2.4795 ln tL  -3.9438 

 (0.659)  (0.811)  (0.830)  (0.229) 

ln tY  -3.2095 ln tY  -3.8144 ln tY  -3.1143 ln tY  -3.6764 

 (0.520)  (0.265)  (0.565)  (0.316) 

ln tFC  -3.8388 ln tFC  -2.6292 ln tFC  -2.7480 ln tFC  -4.5078 

 (0.257)  (0.777)  (0.730)  (0.092) 

Values in parentheses indicate p-values. 

 



 

3.2. VAR specifications and estimates 

For further modeling in the following subsections, we need to establish four VAR 

models in this subsection; each of these models focuses on one of the four fuels and 

does not consider contemporaneous relations among variables for the moment. 

Previous studies have found a break point in energy consumption in China around 2002 

(Zhang and Broadstock, 2016); this can be seen from Fig. 1, where the energy 

(especially coal and electricity) consumption level is abruptly elevated from 2002 

onward.4  Thus, for each the four fuel types, we first establish two candidate VAR 

models. One of these models does not consider the 2002 break point, whereas the other 

considers it through introducing an exogenous dummy variable 
tDUM . 

Following the standard procedure in the literature, these two candidate VAR 

models are estimated as follows (Chen, 2015): 

 
1

p

t l t l t

l

−

=

= + +y c A y ε   (1) 

 
1

p

t l t l t t

l

DUM−

=

= + +  +y c A y H ε   (2) 

where [ ln , ln , ln , ln , ln ]'t t t t t tP I L Y FC=     y   is the vector of endogenous 

variables, { , , , }P C O G E   represents the focused type of fuel demand,    represents 

the difference operator, p   is the lag order, c   is a vector of constants, 
lA   is a 5 5  

coefficient matrix, H   is a five-dimensional vector, [ , , , , ]'t Pt It Lt Yt FCt    =ε   is a 

                                                            
 

 

 

 

 

4 This can be mainly explained from two aspects (Zhang and Broadstock, 2016): 1) with the end of the 

Asian financial crisis and the market-oriented reform of the state-owned enterprises, the Chinese 

economy came back to a rapid economic development track from 1999, which was later enhanced by 

China’s entry into the WTO (World Trade Organization) in December 2001; 2) the Chinese economy 

transitioned into a phase of “heavy industrialization” after 2000, resulting in an increase of energy 

intensity. 
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vector of zero mean residuals with a variance-covariance matrix Ω , and ( )t sE  =ε ε 0  

for t s . 

According to the practice in (Pereira and Pereira, 2010), we perform Bayesian 

information criterion (BIC) to determine the optimal lag order p ; the test results are 

listed in Table 3, which indicates that =1p  is selected for all these VAR models. As 

shown in Fig. 3, all inverse roots of the characteristic AR polynomial for these VAR 

models lie inside unit circles, which means that the estimated models are all stable. 

 

Table 3 

BIC results for the VAR models. 

Lag 

VAR with 

C 
C&DU

M 
O 

O&DU

M 
G 

G&DU

M 
E 

E&DU

M 

1 

-

21.3726

* 

-

21.0690

* 

-

21.6692

* 

-

21.4121

* 

-

19.6889

* 

-

19.3867

* 

-

23.5620

* 

-

23.1919

* 

2 -20.5124 
-

20.2903 
-20.5247 

-

20.2520 
-18.5593 

-

18.3048 
-22.7367 

-

22.4087 

3 -20.5186 
-

20.7429 
-19.8944 

-

19.6798 
-17.5836 

-

17.4228 
-22.0054 

-

21.9267 

* indicates lag order selected by BIC. 

Notes: For { , , , }P C O G E , P represents ln tP  is included in the model but tDUM  is not, 

while P&DUM represents both ln tP  and tDUM  are included in the model. 

 

 

Fig. 3. Inverse roots of AR characteristic polynomial for the VAR models. 
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Furthermore, the VAR specifications without a dummy variable appear to be better 

than those with a dummy variable in terms of BIC results in Table 3 for all fuels. 

However, we still need to check whether the estimated residuals have no serial 

correlation, i.e., ( )t sE  =ε ε 0  ( t s ), as mentioned before, to avoid so-called dynamic 

misspecification (Balestra, 1982). To this end, we employ the autocorrelation LM test 

under the null of no serial correlation at lag orders from 1 to 8. Its results (shown in 

Table 4) suggest that, if we do not want to reject the null hypothesis, even at the 10% 

level of significance, VAR models should include the dummy variable for coal and 

electricity, while this is not mandatory for oil and gas. Thus, the four VAR models for 

the four fuels adopt these specifications hereinafter, unless otherwise specified. 

 

Table 4 

Results of autocorrelation LM test for the VAR models. 

Lag 
VAR with 

C C&DUM O O&DUM   G G&DUM E E&DUM 

1 35.2152 33.2545 31.8855 23.0471 31.8844 29.3976 35.8310 34.1504 

 (0.084) (0.125) (0.161) (0.575) (0.161) (0.248) (0.074) (0.105) 

2 32.7685 33.8034 22.1193 21.7852 26.1018 24.2748 23.4006 23.4492 

 (0.137) (0.112) (0.629) (0.648) (0.402) (0.504) (0.554) (0.551) 

3 16.6399 15.1974 17.8655 16.7528 19.0441 19.5144 25.0331 24.5448 

 (0.894) (0.937) (0.848) (0.891) (0.795) (0.772) (0.461) (0.488) 

4 27.0257 29.0666 18.1141 21.2773 26.7005 33.1111 33.9777 33.0723 

 (0.355) (0.261) (0.838) (0.677) (0.371) (0.128) (0.108) (0.129) 

5 19.9751 23.0708 27.7297 29.1656 31.5370 31.4006 27.8312 27.9448 

 (0.748) (0.573) (0.320) (0.257) (0.172) (0.176) (0.316) (0.310) 

6 13.8196 13.7160 16.5181 16.1503 20.0920 16.5817 21.3114 22.2740 

 (0.965) (0.966) (0.899) (0.910) (0.742) (0.896) (0.675) (0.620) 

7 13.8126 15.4719 23.8705 23.2902 13.8084 16.3765 12.7333 18.1822 

 (0.965) (0.930) (0.527) (0.561) (0.965) (0.903) (0.980) (0.835) 

8 21.0321 20.2691 19.0389 19.6036 27.7018 27.3138 15.4931 16.6707 

 (0.691) (0.733) (0.795) (0.767) (0.322) (0.340) (0.929) (0.893) 

Values in parentheses indicate p-values. 

 

3.3. Effect measurements of exogenous shocks in fuel demand variables 

Based on the four estimated VAR models above, we can examine the effects of 

exogenous shocks in various types of fuel demand, respectively. To this end, the 

impulse-response function method is employed. This method is a type of innovation 

accounting analysis, which traces the effects of an exogenous shock to one of the 
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innovations on the current and future values of the endogenous variables through 

dynamic feedbacks among these variables (Salahuddin et al., 2015). 

Clearly, the key issue here is identifying truly exogenous shocks in each type of 

fuel demand that are not contemporaneously correlated with shocks in the remaining 

endogenous variables (Pereira and Pereira, 2010). Thus, we need to transform the 

estimated residuals in VAR models (1) or (2) to the following form: 

 
t t=ε Pe   (3) 

where P  is a 5 5  matrix, while 1 [ , , , , ]'t t Pt It Lt Yt FCte e e e e−= =e P ε , and '( )t tE =e e I , i.e., 

an identity matrix. Then, each element in te  is the identified exogenous shock of its 

corresponding variable. It is worth mentioning that, considering that the shocks in fuel 

demands are exogenously induced by the introduction of fuel-switching policies, we 

put the equation for the fuel demand in the first place for each VAR model. Then, the 

Cholesky decomposition is performed for the variance-covariance matrix Ω   to 

determine P , as follows: 

 '=Ω PP   (4) 

Here, P   is called the Cholesky factor, which is a lower triangular matrix and 

ensures that ' 1 ' 1 ' 1 1 '( ) ( )( ) ( )t t t tE E− − − −= = =e e P ε ε P P Ω P I  . In fact, the Cholesky 

decomposition-based VAR model is equivalent to the recursive structural VAR (SVAR), 

which is widely used in energy studies (Chen et al., 2016; Lin and Liu, 2016; Wang and 

Mcphail, 2014; Wang et al., 2014). It should be noted that, according to the properties 

of Cholesky decomposition, effect measurements of a shock in the focused fuel demand 

on the other variables are independent from the order of these variables (Pereira and 

Pereira, 2010). 

Accordingly, for the VAR model with ln tP , a shock in the focused fuel demand 

contemporaneously affects the remaining endogenous non-fuel variables, but not vice 

versa. Specifically, the responses of ln tP , ln tY , and ln tFC  at the hth period to a 

shock in the focused fuel demand are computed as follows: 

 
( ln )

( ) , { , , }, 0,1,2, ,
( )

t h
Qh

Pt

Q
R P Q P Y FC h H

e

+ 
=  =


  (5) 

where { , , , }P C O G E , and H  is a user-specified number of periods. 



 

Furthermore, the changes of ln tP , ln tY , and ln tFC  at the hth period, induced by 

a shock in the focused fuel demand, can be computed, respectively, through 

accumulating the responses of ln tP , ln tY  and ln tFC , as follows: 

 
0

( ) ( ), { , , }, 0,1,2, ,
h

Qh Qii
d P R P Q P Y FC h H

=
=  =   (6) 

Then, the percentage changes of 
tP , 

tY , and 
tFC  at the hth period are measured 

below: 

 ( )( ) exp ( ) 1 100%, { , , }, 0,1,2, ,Qh QhP d P Q P Y FC h H  = −   =
 

  (7) 

Intuitively, these changes at the following H  time horizons are caused by the change 

of the focused fuel demand 
tP   at the initial time, i.e., 

0 ( )P P   at period 0, which is 

originally caused by the shock in this fuel demand. We call 0 ( )Q P  the current growth 

effect of its corresponding fuel demand shock. If the growth effect disappears at the Hth 

period, i.e., the impulse-response function converges, we call ( )QH P  the permanent 

growth effect of its corresponding fuel demand shock. 

3.4. Impact measurements of fuel-switching activities 

A fuel-switching activity can be treated as two independent parts, i.e., reduction in 

one fuel demand and increase in another fuel demand. Clearly, the fuel whose demand 

is reduced is the displaced fuel, i.e., any one of the three non-electric fuels, including 

coal, oil, and gas in this paper, while electricity is the fuel whose demand is increased. 

Let us define the percentage point reduction rate of the displaced fuel as the 

“substitution rate”, which is specifically induced by a 1% growth in electricity demand 

at period 0 for the purpose of switching from that displaced fuel to electricity. 

Then, we can study the impacts of a fuel-switching policy for electrification using 

the above-mentioned effect measurements of exogenous shocks in both reduced and 

increased fuel demand variables. Specifically, if we want to switch from one of the three 

non-electric fuels to electricity, given a substitution rate 
Pr   for this displaced fuel 

( { , , }P C O G ), the percentage changes of GDP and CO2 emissions at the hth period 

caused by this fuel-switching are: 
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( )

( )

0 0

0 0
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( ) 100%
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  
 =

 
→ = −  

 

 

 (8) 

Correspondingly, we call ( )0 ( )Y PD P r E→  and ( )( )YH PD P r E→  the current and 

the permanent growth effects, respectively, of this kind of fuel-switching activity on 

GDP, while ( )0 ( )FC PD P r E→   and ( )( )FCH PD P r E→   are, respectively, the current 

and the permanent growth effects on CO2 emissions. 

 

4. Results and discussions 

Using the four VAR models that are specified and estimated above, this section 

obtains the final results to answer the three questions raised in the Introduction section. 

Specifically, Section 4.1 measures the effects of exogenous shocks in various fuel 

demand variables, which answers the question of how changes in each type of fuel 

demand dynamically affect future GDP and CO2 emissions; Section 4.2 measures the 

impacts of various types of fuel-switching for electrification, which answers the 

question of what the ideal fuel-switching states for electrification to achieve the trade-

off between CO2 emission reduction and economic growth maintenance are; and 

Section 4.3 measures some typical substitution cases encouraged by the government, 

which answers the question of whether the current fuel-switching policies for 

electrification can not only reduce CO2 emissions but also maintain economic growth. 

4.1. Effect measurements of exogenous shocks in fuel demand variables 

According to (5) and (6), the responses and accumulated responses of GDP and 

CO2 emissions to one standard-deviation (S.D.) shock in various types of fuel demand 

are calculated, and the results are presented in Fig. 4. From the panels in Fig. 4, we can 

see that a shock in each type of fuel demand has a positive impact on both CO2 

emissions and the fuel demand, with statistical significance. Apart from the gas demand, 



 

shocks in various types of fuel demand also have positive impacts on GDP, and the coal 

and electricity shocks have statistically significantly impacts. 

The slightly negative impact of the gas shock may be related to China’s distorted 

natural gas price mechanism, while natural gas is the main part of the gas. For a long 

time, the industrial gas price has been much higher than the residential gas price in 

China, while the cost of residential gas, in contrast, has been higher than the cost of 

industrial gas. In addition, as an important importer of natural gas, China’s natural gas 

import prices are often higher than the domestic prices, which creates huge losses for 

the natural gas industry (Wei et al., 2016). Thus, this negative impact is not surprising, 

since an increase in the natural gas price would have a negative impact on GDP in China 

(Zhang et al., 2017). Furthermore, the higher import risks involved in the increasingly 

large amount of imported gas also have a negative impact on economic output (Dong 

and Kong, 2016). 
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Fig. 4. Responses and accumulated responses of GDP and CO2 emissions to a shock in each type 

of fuel demand. Notes: The error bands with 68% posterior probability are adopted as 

recommended by (Pereira and Pereira, 2010) and (Sims and Zha, 1999), which are represented by 

cyan shades. 

 

Meanwhile, without exception, the accumulated response functions converge after 

10 years and even 5 years; thus, there is no harm in regarding the changes at the 15th 

period as the permanent changes. In particular, the responses ( ( )QhR P  ) and the 

accumulated responses ( ( )Qhd P ), along with the percentage changes ( ( )Qh P ) at the 

current period ( 0h = ) and the permanent period ( 15h = ) are listed in Table 5. 
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Change measures of GDP and CO2 emissions to a shock in each type of fuel demand (Unit: %). 

Change 

measure 

VAR for coal  VAR for oil  VAR for gas  VAR for electricity 

0h =  15h =   0h =  15h =   0h =  15h =   0h =  15h =  

( )PhR P  4.64 0.03  3.63 0.00  8.37 0.00  2.65 0.00 

( )YhR P  0.63 0.01  0.22 0.00  -0.02 0.00  1.26 -0.01 

( )FChR P  2.24 0.02  1.21 0.00  1.99 0.00  2.35 -0.01 

( )Phd P  4.64 11.01  3.63 3.80  8.37 7.39  2.65 4.84 

( )Yhd P  0.63 2.71  0.22 0.56  -0.02 -0.54  1.26 2.65 

( )FChd P  2.24 5.77  1.21 2.05  1.99 1.03  2.35 4.85 

( )Ph P  4.75 11.64  3.70 3.88  8.73 7.67  2.69 4.96 

( )Yh P  0.63 2.75  0.22 0.56  -0.01 -0.54  1.26 2.69 

( )FCh P  2.26 5.94  1.22 2.07  2.01 1.04  2.38 4.97 

 

4.2. Impact measurements of fuel-switching for electrification 

Given the substitution rate, 
Pr  ( { , , }P C O G ), we can then calculate the current 

and permanent impacts of switching from non-electric fuels to electricity on GDP and 

CO2 emissions according to (8). Fig. 5 compares the impacts on GDP and CO2 

emissions in various ranges of 
Pr  for different displaced fuels. 

Clearly, apart from the growth rate of GDP induced by the gas-electricity switching, 

there is a tendency for the growth rates of both GDP and CO2 emissions to slow down 

as the substitution rate increases. This is mainly because more displaced fuel will be 

reduced with the increasing substitution rate, while there is no change in the increase 

of electricity demand. Then, the growths of GDP and CO2 emissions caused by the 

electricity increase are not changed, while the reductions of GDP and CO2 emissions 

induced by the displaced fuel decrease become greater. In particular, the above-

mentioned exception for gas-electricity switching is due to the slightly negative impact 

of the gas shock on GDP. 

Since the growth rates of GDP are higher than those of CO2 emissions, switching 

from coal to electricity could decrease the carbon intensities if the substitution rate 
Cr  

is larger than 1.21 and 1.26 for 0h =   and 15h =  , respectively. However, to avoid 

negative impacts on economic development, the substitution rates for 0h =  and 15h =  

should not be larger than 3.54 and 1.73, respectively. Thus, even though certain coal-

electricity switching activities have short-term advantages when 1.73 3.54Cr  , there 

are negative impacts on the economy due to the shrinking of coal-related industries. In 
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the long-run, the substitution rate of the best coal-electricity switching activities ranges 

from 1.48 to 1.73, where economic development is promoted, while CO2 emissions are 

reduced in the permanent period. 

 

 

Fig. 5. Sketch of the percentage changes of GDP and CO2 emissions at the 1st and 15th period. 

Notes: The boxes marked with “Y” and “FC” represent the percentage changes of GDP and CO2 

emissions respectively; that the Y box is on the top of the FC box in vertical means the growth 

rate of GDP is larger than the growth rate of CO2 emissions, and vice versa. 

 

The impacts of switching from oil to electricity are similar to the case of coal-

electricity switching. In the current and the permanent periods, the carbon intensities 

are decreased, while the economic development is not harmed if the substitution rate 
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Or  ranges from 1.53 to 8.03 and from 2.09 to 6.59, respectively. Even though certain 

oil-electricity switching activities have short-term advantages when 6.59 8.03Or  , 

there are negative impacts on the economy due to the shrinking of oil-related industries. 

Clearly, the substitution rate of the best oil-electricity switching activities ranges from 

3.31 to 6.59, where economic development is promoted, while CO2 emissions are 

reduced in both current and permanent periods. 

The impacts of switching from gas to electricity on GDP are unusual due to the 

above-mentioned negative response of economic output to the gas shock. It should be 

noted that it does not make sense if the substitution rate 
Gr  is either less than 0 or very 

large, since these two cases are not realistic in practice (see the following subsection). 

Thus, we only discuss the case where the substitution rate ranges from 0 to 10. From 

this figure, we can see that the carbon intensities are decreased when 1.79Gr  , and the 

CO2 emissions are even reduced with increased economic output when 3.85Gr   in the 

current period. However, this is not a stable state, and the growth rate of CO2 emissions 

is always greater than 0 in the permanent period, which means that switching from gas 

to electricity cannot contribute to reducing the absolute amount of CO2 emissions, 

unless it is coordinated with a cleaner power structure. 

4.3. Impact measurements of the current electrification policies in China 

As mentioned in Section 1, the Chinese government has provided a very 

comprehensive policy support for electrification since 2016, with the main supported 

fields including residential and industrial electric heating, electric vehicles, electricity 

supply for shore power in ports, and agricultural irrigation and drainage. Since the 

accurate substitution rates for various fuels are not available, we review the roughly 

equivalent fuel use between typical fossil-fueled appliances and their corresponding 

alternative electrical appliances from the literature (Jiang et al., 2002; Lai et al., 2016; 

Li et al., 2009; Liu and Luo, 2005; Min and Cheng, 2007; Niu et al., 2008; Wang et al., 

2007; Xu et al., 2011). 

Taking China's final energy consumption structure (average ratio in the last 5 years) 

into account, we roughly calculate the substitution rates of these related replacements 

according to such equivalent fuel use data. These substitution rates are used to define 

some substitution cases, a certain combination of which would be the actual substitution 



25 

 

situation. These substitution rates and their corresponding cases are listed in Table 6, 

where (0.65)C E→  means substituting 1% of electricity consumption for 0.65% of 

coal consumption. 

 

Table 6 

Substitution rates and the corresponding substitution cases. 

Fuel-

switching 

form 

 

Pr  
 

Case name 

 Representative cases 

   
Displaced fossil-

fueled appliances 
Alternative electrical appliances 

Switch from 

coal to 

electricity 

 0.65  (0.65)C E→   
Coal-fired boilers 

and stoves 

Electric heaters and boilers, 

electric heating films, phase-

change electric heating floors 

 2.06  (2.06)C E→   
Coal-fired boilers 

and stoves 

Air-source, ground-source and 

water-source heat pumps 

Switch from 

oil to 

electricity 

 1.49  (1.49)O E→   Oil-fired boilers Electric boilers 

 3.99  (3.99)O E→   
Diesel generators in 

ships 
Shore power in ports 

 4.69  (4.69)O E→   Oil-fired boilers 
Air-source, ground-source and 

water-source heat pumps 

 5.32  (5.32)O E→   

Diesel pumps for 

agricultural irrigation 

and drainage 

Motor pumps for agricultural 

irrigation and drainage 

 7.85  (7.85)O E→   
Gasoline-powered 

vehicles 
Electric vehicles 

Switch from 

gas to 

electricity 

 1.86  (1.86)G E→   
Gas-fired boilers and 

stoves 

Electric heaters and boilers, 

electric heating films, phase-

change electric heating floors 

 5.87  (5.87)G E→   
Gas-fired boilers and 

stoves 

Air-source, ground-source and 

water-source heat pumps 

 7.72  (7.72)G E→   Natural gas vehicles Electric vehicles 

 

Then, we can measure the current and permanent impacts of these substitution 

cases according to their corresponding substitution rates; the results are shown in Fig. 

6. From this figure, we can see that carbon intensities will increase in almost all the 

cases of (0.65)C E→ , (1.49)O E→  and (1.86)G E→  in both current and permanent 

periods, which means that replacing fossil-fueled heating appliances with conventional 

electric heaters (not heat pumps) is not a wise choice in view of CO2 emission reduction. 

Fuel-switching induced by these kinds of appliance replacements should be avoided 

unless the electricity is derived mainly from renewable energy sources in the 

implemented areas, especially if there is a high wind or photovoltaic energy curtailment 

ratio. 



 

 

Fig. 6. The impacts of various substitution cases of electrification on GDP and CO2 emissions. 

 

In fact, heat pumps are a better heating choice than conventional electric heaters 

since the carbon intensities will decrease in the cases of (2.06)C E→ , (4.69)O E→ , 

and (5.87)G E→  at both periods. Oil-electricity switching is the best of these cases, 

while coal-electricity switching may harm economic growth slightly in the permanent 

period. The absolute amount of CO2 emissions is reduced in both coal-electricity and 

oil-electricity switching, but gas-electricity switching may increase it in the permanent 

period. In addition, the impacts of (3.99)O E→  and (5.32)O E→  are similar to the 

impacts of (4.69)O E→ , the only difference being reflected in the degree of impacts. 

The substitution rates of (7.85)O E→  and (7.72)G E→ , respectively, come 

from oil-electricity and gas-electricity switching, induced by the development of 

electric vehicles. In both cases, although CO2 emissions are reduced while maintaining 

economic growth in the current period, the former case will harm the economic output 

while the latter will increase the absolute amount of CO2 emissions in the permanent 

period. Thus, we should pay close attention to the shrinking of oil-related industries 

induced by developing electric vehicles, and adopt reasonable measures to offset this 
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negative effect. Meanwhile, substituting electric vehicles for natural gas vehicles is not 

a good choice from the perspective of CO2 emission reduction. 

 

5. Conclusions and policy implications 

Electrification is a sign of modern civilization. To control air pollution and 

promote productivity, shifting final energy consumption to electricity is advocated and 

encouraged by both academics and the Chinese government. However, in view of the 

importance of energy to the economy and the increasing concerns about climate change, 

the problem of how to achieve the trade-off between reducing CO2 emissions and 

maintaining economic development when implementing policies to switch from 

various fuels to electricity remains to be solved, even though electrification helps in 

controlling conventional air pollutants, such as smog. Consequently, after measuring 

the effects of exogenous shocks in various fuel demand variables employing the 

impulse response functions of several VAR models, we measure the long-term impacts 

of fuel-switching activities for electrification on GDP and CO2 emissions. Finally, some 

replacement cases from fossil-fueled appliances to their electrical counterparts, which 

are currently encouraged by the government, are assessed. 

5.1. Conclusions 

From the empirical results, we arrive at certain conclusions, as follows: 

(1) All the exogenous shocks in fuel demand variables have positive and statistically 

significant impacts on both CO2 emissions and fuel demands. Shocks in coal, oil, 

and electricity demands also have positive impacts on GDP, and the impacts of coal 

and electricity shocks are statistically significant. However, the gas shock has a 

slightly negative impact on GDP, which may be related to China’s distorted natural 

gas price mechanism and increasing import risks, while natural gas is the main part 

of the gas consumed. Nevertheless, almost all these impacts will become stable 

after 10 years, and even after 5 years. 

(2) Carbon intensity decreases, and even CO2 emission reductions with economic 

growth maintenance, are potentially achieved in both current and permanent 

periods for coal-electricity and oil-electricity switching. For gas-electricity 



 

switching, although some favorable conclusions can be drawn, this is not a stable 

state, and the permanent impacts indicate that this kind of fuel-switching is not a 

wise choice from the perspective of CO2 emission reduction (especially reducing 

the absolute amount of CO2 emissions). This is most likely because China mainly 

uses coal to generate electricity. 

(3) For heating, heat pumps are better choices than conventional electric heaters to 

replace the fossil-fueled heating appliances from the perspective of CO2 emission 

reduction. Deployment of conventional electric heaters should only be encouraged 

in areas where electricity is generated mainly from renewable energy sources, 

especially if there is a high wind or photovoltaic energy curtailment ratio. Shore 

power in ports and motor pumps have similar advantages to heat pumps in reducing 

CO2 emissions, and the only difference is reflected in the degree of impacts. 

Generalizing electric vehicles for oil-electricity switching can reduce CO2 

emissions, while maintaining economic growth in the current period, but it will 

harm economic development in the permanent period. Generalizing electric 

vehicles for gas-electricity switching can also reduce CO2 emissions while 

maintaining economic growth in the current period, but it will increase the absolute 

amount of CO2 emissions in the permanent period. 

5.2. Policy implications 

According to the conclusions drawn above, we have some implications for detailed 

rule-making to implement shifting final energy consumption to electricity in China: 

(1) Under the present situation of a coal-based power generation structure, compared 

with gas-electricity switching, coal-electricity and oil-electricity switching should 

been given more policy support, from the perspective of CO2 emission reduction. 

Furthermore, considering that the direct burning of coal is one of the most 

important causes of air pollution in China, coal-electricity switching is an urgent 

matter. 

(2) The fuel-switching policies for electrification must be accompanied by cleaning 

the electric energy. The proportion of renewable electricity should be improved, 

and CCS (carbon capture and storage) technologies can be generalized under the 

premise of a reasonable assessment. 
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(3) Before implementing a fuel-switching activity, we should not only consider the 

immediate benefits but also adopt reasonable measures to avoid long-term negative 

effects. Meanwhile, even though a fuel-switching activity can control conventional 

air pollution, we should still take note of its impacts in other areas, such as CO2 

emissions. 

(4) In a specific fuel-switching case, we should accurately assess the alternative 

electric appliances, since not all electric appliances are better than their fossil-

fueled counterparts. We cannot say arbitrarily that electricity is superior to certain 

types of fossil fuels. 
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