

OUTPUT CONSENSUS OF HETEROGENEOUS LINEAR MULTI-AGENT SYSTEMS BY EVENT-TRIGGERED CONTROL

Gang FENG

Department of Mechanical and Biomedical Engineering City University of Hong Kong

July 25, 2014

Introduction

- Background
- Problem Statement
- Research Methodologies
 - Main Challenges
 - Internal Reference Model
 - Event-Triggered Control for Homogeneous Systems

Main Results

- A Sufficient and Necessary Condition
- Event-Triggered Control Design
- Feasibility
- Self-Triggered Control Design
- An Example
 - System Model
 - Simulations

Conclusions

Introduction

- Background
- Problem Statement

Research Methodologies

- Main Challenges
- Internal Reference Model
- Event-Triggered Control for Homogeneous Systems

Main Results

- A Sufficient and Necessary Condition
- Event-Triggered Control Design
- Feasibility
- Self-Triggered Control Design
- An Example
 - System Model
 - Simulations

Conclusions

Introduction

- Background
- Problem Statement

Research Methodologies

- Main Challenges
- Internal Reference Model
- Event-Triggered Control for Homogeneous Systems

Main Results

- A Sufficient and Necessary Condition
- Event-Triggered Control Design
- Feasibility
- Self-Triggered Control Design

An Example

- System Model
- Simulations

Conclusions

Introduction

- Background
- Problem Statement

Research Methodologies

- Main Challenges
- Internal Reference Model
- Event-Triggered Control for Homogeneous Systems

Main Results

- A Sufficient and Necessary Condition
- Event-Triggered Control Design
- Feasibility
- Self-Triggered Control Design

An Example

- System Model
- Simulations

Conclusions

Introduction

- Background
- Problem Statement

Research Methodologies

- Main Challenges
- Internal Reference Model
- Event-Triggered Control for Homogeneous Systems

Main Results

- A Sufficient and Necessary Condition
- Event-Triggered Control Design
- Feasibility
- Self-Triggered Control Design

An Example

- System Model
- Simulations

Conclusions

CONTENTS

Introduction

- 2 Research Methodologies
- 3 Main Results
- 4 An Example
- 5 Conclusions

- Background
- Problem Statement

Multi-Agent System (MAS)

- Modeling/describing some collective behaviors of some animals.
- Wide applications in engineering problems.

Some engineering applications of the MAS.

(http://www.ri.cmu.edu/research_guide/multi_agent_systems.html)

One fundamental problem: consensus problem.

Early researches focused on MAS with identical dynamics.

$$\dot{x}_i = Ax_i + Bu_i, \ i = 1, \cdots, N,$$
 (1.1)

-called homogeneous MAS.

In many applications, the agents' dynamics are non-identical.

$$\dot{x}_i = A_i x_i + B_i u_i y_i = C_i x_i, \quad i = 1, \cdots, N,$$

$$(1.2)$$

-called heterogeneous MAS.

All agents communicate with each other through a communication graph *G*.

Background

Consensus Problem

Homogeneous MAS: state consensus problem. Definition: Design u_i such that

$$\lim_{t \to \infty} \|x_i(t) - x_j(t)\| = 0, \, \forall i, j = 1, \cdots, N,$$
(1.3)

holds for any finite $x_i(0), \forall i = 1, \dots, N$.

Heterogeneous MAS: output consensus problem. Definition: Design u_i such that

$$\lim_{t \to \infty} \|y_i(t) - y_j(t)\| = 0, \, \forall i, j = 1, \cdots, N,$$
(1.4)

holds for any finite $x_i(0)$, $\forall i = 1, \dots, N$.

Remark 1: Output consensus problem includes state consensus problem as a special case.

Why Event-Triggered Strategy?

- Individual agents equipped with microprocessors and some actuation modules.
 - On-board energy and resources are limited.
 - Energy-saving control schemes are needed.
- To reduce the communication load.
 - Proposed in stabilization problem for a single system [Tabuada (2007)].
 - Better performance than traditional periodical sampling [Astrom & Bernhardsson (1999, 2002)].
 - Mainly applied to some MASs with simple agent dynamics.

- Design an event-triggered control scheme, such that the output consensus problem of heterogeneous MAS (1.2) can be solved.
 - Control input *u_i* can only access information from itself and its neighboring agents.
 - Event-triggered strategy should be integrated in the control scheme.

CONTENTS

1 Introduction

- 2 Research Methodologies
- 3 Main Results
- 4 An Example
- 5 Conclusions

- Main Challenges
- Internal Reference Model
- Event-Triggered Control for Homogeneous Systems

Main Challenges

- Heterogeneity Problem.
 - Different dynamics: $A_i \neq A_j$, $B_i \neq B_j$ for $i \neq j$.
 - Different state dimensions.
- Use of event-triggered strategy.
 - Convergence analysis.
 - Development of event-triggering condition based on local information.
 - Feasibility analysis.

Internal Reference Model

Introduction of internal reference models.

The internal reference models of the heterogeneous MAS.

Designed to be of identical dynamics.

$$\dot{\eta}_i = S\eta_i + \tilde{u}_i. \tag{2.1}$$

- Regarded as a homogeneous MAS.
 - Exchanging information: states of the internal reference models.
 - To reduce the communication load: event-triggered strategy.
- Objective: $(\eta_i \eta_0) \rightarrow 0$ as $t \rightarrow \infty$, $\forall i = 1, \dots, N$.
- η_0 can be regarded as a reference signal for each agent.

Event-Triggered Control for Homogeneous MAS

For a homogeneous MAS

$$\dot{x}_i = Ax_i + B\tilde{u}_i, \ i = 1, \cdots, N, \tag{2.2}$$

- Define the combined measurement as

$$\tilde{q}_i(t) = \sum_{j=1}^N a_{ij} (x_j(t) - x_i(t)).$$
 (2.3)

- Define the measurement error as

$$\tilde{e}_i(t) = \tilde{q}_i(t_k^i) - \tilde{q}_i(t).$$
(2.4)

Control law for each agent:

$$\tilde{u}_i(t) = \tilde{K}\tilde{q}_i(t_k^i), \ t \in \left[t_k^i, t_{k+1}^i\right), \tag{2.5}$$

with {t₀ⁱ, t₁ⁱ, · · · } will be determined by the triggering condition.
Triggering condition

$$h(\tilde{e}_i(t), \tilde{q}_i(t)) = 0.$$
 (2.6)

13/35

Lemma 1 [Hu et al. (2014)]: Under the assumptions that (A, B) is stabilizable and the undirected communication graph G is connected, there always exists at least one solution P > 0 for the following inequality

$$PA + A^T P - \alpha PBB^T P + \beta I_n \le 0, \tag{2.7}$$

where $0 < \alpha \le 2\lambda_2$, $\beta \ge 2\lambda_N$, with λ_2 and λ_N the Fiedler eigenvalue and the largest eigenvalue of the Laplacian matrix of \mathcal{G} , respectively. Then, letting $\tilde{K} = B^T P$, the state consensus of homogeneous multi-agent system (2.2) can be achieved by the control law (2.5) and the following triggering condition

$$h(\tilde{e}_i(t), \tilde{q}_i(t)) = \|\tilde{e}_i(t)\| - \tilde{\gamma}_i \|\tilde{q}_i(t)\| = 0.$$
(2.8)

where $\tilde{\gamma}_i = \sqrt{\frac{\sigma_i \cdot a(2-a\rho)}{\rho}}$ with $\sigma_i \in (0,1)$, $\rho = \|PBB^TP\|$, and *a* being a positive number satisfying $a < \frac{2}{\rho}$.

CONTENTS

1 Introduction

- 2 Research Methodologies
- 3 Main Results
- 4 An Example

5 Conclusions

- A Sufficient and Necessary Condition
- Event-Triggered Control Design
- Feasibility
- Self-Triggered Control Design

Event-Triggered Control Scheme

Output feedback controller.

$$\dot{\eta}_{i} = S\eta_{i} + K \sum_{j=1}^{N} a_{ij} \left(\eta_{j}(t_{k}^{i}) - \eta_{i}(t_{k}^{i}) \right), t \in [t_{k}^{i}, t_{k+1}^{i})$$

$$\dot{\xi}_{i} = A_{i}\xi_{i} + B_{i}u_{i} + H_{i} \left(C_{i}\xi_{i} - y_{i} \right)$$

$$u_{i} = K_{1i}\xi_{i} + K_{2i}\eta_{i}, i = 1, \cdots, N.$$

$$(3.1)$$

Design parameters: *S*, *K*, *H_i*, *K*_{1*i*}, *K*_{2*i*}; Triggering time sequence: $\{t_0^i, t_1^i, \dots\}$. Event-triggering condition.

$$h(e_i(t), q_i(t)) = \|e_i(t)\| - \gamma_i \|q_i(t)\| = 0,$$
(3.2)

where $q_i(t) = \sum_{j \in N_i} (\eta_j(t) - \eta_i(t))$, $e_i(t) = q_i(t_k^i) - q_i(t)$ and γ_i can be calculated by utilizing Lemma 1.

• Questions: Under what condition, the problem can be solved by (3.1) and (3.2)? How to design those parameters?

Assumptions:

- Each pair of (A_i, B_i) is stabilizable.
- Each pair of (A_i, C_i) is detectable.
- The undirected communication graph ${\mathcal G}$ is connected.
- **Theorem 1**: Consider the heterogeneous linear multi-agent system (1.2) under Assumptions 1-3. The output consensus problem can be solved by the proposed controller (3.1) with the triggering condition (3.2) if and only if there exists (*S*, *R*), such that the following equations have solutions (Π_i , Γ_i) for $i = 1, \dots, N$, where *S*, *R*, Π_i and Γ_i all have compatible dimensions,

$$A_i \Pi_i + B_i \Gamma_i = \Pi_i S. \tag{3.3}$$

$$C_i \Pi_i = R. \tag{3.4}$$

- **Remark 2**: Internal reference model is used to generate a virtual reference signal η_0 for each agent.
- The dynamics and output of the virtual reference signal

$$\dot{\eta}_0(t) = S\eta_0(t)$$

 $y(t) = R\eta_0(t)$

with $(y_i(t) - y(t)) \rightarrow 0$ as $t \rightarrow \infty$, $\forall i = 1, \cdots, N$.

Notes

Design procedure.

- Step 1: Choose proper matrices *S* and *R*, such that (3.3) and (3.4) have solution pairs $(\Pi_i, \Gamma_i), i = 1, \dots, N$.
- Step 2: Choose proper Λ_i , such that $A_i + B_i \Lambda_i$ is Hurwitz. Let K_{1i} , K_{2i} be as follows,

$$K_{1i} = \Lambda_i, K_{2i} = \Gamma_i - \Lambda_i \Pi_i. \tag{3.5}$$

- Step 3: Choose a proper H_i , such that $A_i + H_iC_i$ is Hurwitz.
- Step 4: Let K = P, where P > 0 satisfies the following inequality

$$PS + S^{T}P - \alpha PP + \beta I_{m} \le 0.$$
(3.6)

- Step 5: Let $t_0^i, t_1^i, \dots, \forall i = 1, \dots, N$, to be determined by the proposed triggering condition (3.2).

Exclusion of Singular Triggering

- Singular Triggering.
 - Definition:

- Method: To prove that if t_k^i exists and $q_i(t_k^i) \neq 0$, the next triggering time t_{k+1}^i exists and $q_i(t_{k+1}^i) \neq 0$.
- Requirement: The proof holds for any agent.
- **Corollary 1**: Consider the heterogeneous multi-agent system (1.2) and the control scheme (3.1). No agent will exhibit singular triggering behavior.

Zeno behavior.

- Definition:

- Method: To prove that the length of inter-event interval is strictly positive.
- Requirement: The proof holds for any agent.
- **Corollary 2**: Consider the heterogeneous multi-agent system (1.2) and the control scheme (3.1). No agent will exhibit Zeno behavior.
 - Calculate the inter-event interval for ith agent

$$t_{k+1}^{i} - t_{k}^{i} > \frac{1}{\|S\|} \ln\left(\frac{\|S\| s_{k}^{i}}{\alpha_{k}^{i}} + 1\right) \ge 0.$$
(3.7)

where s_{k}^{i} and α_{k}^{i} are two positive constants.

Drawback of Event-Triggered Strategy

香港城市; City Univer of Hong K

In the proposed event-triggering condition

$$h(e_i(t), q_i(t)) = ||e_i(t)|| - \gamma_i ||q_i(t)|| = 0,$$

continuous monitoring of $e_i(t)$ and $q_i(t)$ are required.

How to avoid this constraint?

- Main idea: Estimate the next triggering time based on the measurement at previous triggering time.
- We propose the following condition

$$\left\|e_{i}\left(t\right)\right\| \leq rac{\gamma_{i}}{\sqrt{2+2\gamma_{i}^{2}}}\left\|q_{i}\left(t_{k}^{i}
ight)\right\| = s_{k}^{i}$$

which implies $h(e_i(t), q_i(t)) \leq 0$.

Calculate the time it will be needed for $||e_i(t)||$ to increase to s_k^i .

• Calculate the increasing rate of $||e_i(t)||$.

$$\frac{d}{dt}\left\|e_{i}\left(t\right)\right\|\leq\left\|S\right\|s_{k}^{i}+w_{i}(t),$$

where $w_i(t) = \left\| (d_i P - S) q_i(t_k^i) - P \sum_{j \in \mathcal{N}_i} q_j(t_{k'(t)}^j) \right\|$, with $t_{k'(t)}^j$ being the latest triggering time for agent $i, i \in \mathcal{N}_i$.

Self-Triggering Rule

If no neighboring agent is triggered ahead of agent *i*, then $t_{k+1}^i = \frac{s_k^i}{\|S\|s_k^i + w_i(t_k^i)}$. Otherwise, if one neighboring agent *i* is triggered first at time t', then update $w_i(t)$ as $w_i(t')$ and calculate the left time which will be needed for $||e_i(t)||$ to increase to s_k^i .

The feasibility of self-triggering rule: omitted here.

Result

Theorem 2: Consider the heterogeneous linear multi-agent system (1.2) under Assumptions 1-3. The output consensus problem can be solved by the proposed controller (3.1) and the self-triggering rule if and only if there exists (S, R), such that (3.3) and (3.4) always have solutions (Π_i, Γ_i) for $i = 1, \dots, N$, where *S*, *R*, Π_i and Γ_i all have compatible dimensions.

AN EXAMPLE

- 1 Introduction
- 2 Research Methodologies
- 3 Main Results
- 4 An Example
- 5 Conclusions

- System Model
- Simulations

System Model

Consider the following heterogeneous MAS [Wieland et al. (2011)].

$$\dot{x}_i = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & c_i \\ 0 & -d_i & -a_i \end{pmatrix} x_i + \begin{pmatrix} 0 \\ 0 \\ b_i \end{pmatrix} u_i$$

$$y_i = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} x_i, i = 1, 2, 3, 4,$$

where parameters $\{a_i, b_i, c_i, d_i\}$ are set as $\{1, 1, 1, 0\}$, $\{10, 2, 1, 0\}$, $\{2, 1, 1, 10\}$ and $\{2, 1, 1, 1\}$, respectively.

The communication graph.

The communication graph \mathcal{G} .

System Model

Control Design

Event-triggered control scheme is designed according to Steps 1-5.

- In Step 1:

$$S = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), R = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right).$$

- In Step 2:

$$\Lambda_{i} = \begin{pmatrix} -1 & -1 & -1 \end{pmatrix},$$

$$K_{1i} = \Lambda_{i} = \begin{pmatrix} -1 & -1 & -1 \end{pmatrix},$$

$$K_{2i} = \Gamma_{i} - \Lambda_{i} \Pi_{i} = \begin{pmatrix} 1 & 1 + \frac{d_{i}}{b_{i}} \end{pmatrix}.$$
- In Step 3: We set $H_{i} = \begin{bmatrix} 0 & 0 \\ -10 & -10 \\ 9 & 9 \end{bmatrix}, i = 1, \cdots, 4.$
- In Step 4: $K = P = \begin{pmatrix} 1.9848 & 0.2462 \\ 0.2462 & 2.0459 \end{pmatrix}.$

- In Step 5: Threshold in the triggering condition can be calculated $\gamma_i = 0.1942$. Triggering time sequence can be calculated by event-triggering condition or self-triggering rule.

Simulations

Simulation results.

Output response of all agents via event-triggered control scheme.

Note:
$$y_i = col(y_{i1}, y_{i2})$$
 and $e_{ij}^y = y_{i1} - y_{j1}$.

Simulations

Simulations Continued

Simulation results.

Output response of all agents via self-triggered control scheme.

Note:
$$y_i = col(y_{i1}, y_{i2})$$
 and $e_{ij}^y = y_{i1} - y_{j1}$.

Performances comparison between two proposed control schemes

Control scheme	T_s (sec)	Triggering numbers for agents			
		1	2	3	4
Event-triggered	191.97	249	675	248	39
Self-triggered	85.08	805	970	421	415

where T_s is defined as a minimum time, such that, $||y_i(t) - y_i(t)|| \le 0.001$ when $t > T_s$, for any agents *i*, *j*.

Less settling time while more triggering numbers are needed to reach output consensus by the self-triggered control scheme.

CONTENTS

- 1 Introduction
- 2 Research Methodologies
- 3 Main Results
- 4 An Example
- 5 Conclusions

- Conclusions
- References

- Output consensus problem of heterogeneous linear MASs has been studied.
- A novel event-triggered control scheme has been proposed.
- Feasibility of the proposed control scheme has been discussed.
- A novel self-triggered control scheme has been proposed.

References

[1] P. Tabuada, "Event-triggered real-time scheduling of stabilizing control tasks," IEEE Transactions on Automatic Control, 52(9)(2007)1680 - 1685.

[2] K. J. Åström, B. M. Bernhardsson, "Comparison of periodic and event based sampling for first-order stochastic systems," In Proceedings of the 14th IFAC World congress., 11(1999)301-306.

[3] K. J. Åström, B. M. Bernhardsson, "Comparison of riemann and lebesque sampling for first order stochastic systems," In Proceedings of the 41st IEEE Conference on Decision and Control, 2(2002)2011-2016.

[4] R. Olfati-Saber, J. A. Fax, R. M. Murray, "Consensus and cooperation in networked multiagent systems," Proceedings of the IEEE, 95(1)(2007)215 – 233.

[5] W. Ren, "On consensus algorithms for double-integrator dynamics," IEEE Transactions on Automatic Control, 53(2008)1503–1509.

[6] P. Wieland, R. Sepulchre, F. Allgöwer, "An internal model principle is necessary and sufficient for linear output synchronization," Automatica, 47(2011)1068-1074.

[7] Y. Fan, G. Feng, Y. Wang, C. Song, "Distributed event-triggered control of multi-agent systems with combinational measurements," Automatica, 49(2013)671-675.

[8] W. Hu, L. Liu, G. Feng, "Consensus of linear multi-agent systems by distributed eventtriggered strategy," In Proceedings of the 19th World Congress of the International Federation of Automatic Control, to appear.

Thank You!

