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WHAT’S NEW IN OUR WORK?

 Non-1dentical agents;
 Nonlinear, higher-dimensional models;

e Distributed output-feedback vs. state-feedback
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DISTRIBUTED CONTROL STRUCTURE

N -

C: Controller; P: Plant

<«—> (Communication links for coordination

<—> Physical interconnections or autonomous a




Basic Idea:

Transform a distributed control problem into a
stabilization problem of dynamic networks:

e Nonlinear dynamics

 Uncertainties

e Time-delay

X = il wg) Vi
vi = gi(x;)

Control law C; B
Yk

® the outputs of
O other subsystems

Pl




INPUT-TO-STATE STABILITY (ISS)

Consider a nonlinear control system
X=T(x,u)

where f:R"xR™ > R" 1s a locally Lipschitz function
and satisfies f(0,0) =0.

The system 1s said to be input-to-state stable (I1SS) if

(1) < max{B(x(0)],t), »(|u] )}

for all t >0, where L elkL and y € JC. Function y
1s called ISS gain. || ||, stands for the essential

supremum norm.

[Sontag, TAC’ 89, 90]



[SS, NONLINEAR SMALL-GAIN THEOREM

Consider an interconnected system

u]—— X1
X = T,0%, %, )
: 712 21
X, = 1,(%;, %, ;)
Assume that each x -subsystem 1s ISS: 3 Y

% @) < max{ 8 (% O} t), 75 iy (sl ) 74 (Juill )}
where B €KL |, 7,5, 7i €K

The interconnected system is ISS with (u,,u,) as the

mput if
Y (71(8)) <s, Vs>0,

l.e.,

Y12 © Vo < 1.



SMALL-GAIN THEOREM FOR INPUT-TO-OUTPUT STABLE
(I0S) SYSTEMS

Consider an interconnected system composed of two
subsystems: for 1 =1,2,

% =106U, Ya5), Y =h(%).

Assume that each subsystem 1s unboundedness
observable (UO) with zero-offset and I0S:

%@ 1 (1% ) [+11 Vs oy + 11U, llo )
|y (D) < max{zgi (1% (0) |, ), 7/i(3—i)(|| Yaill.,): 7 Iy, ||oo)}

The interconnected system is UO and I0S with (U;,U,)
as the input if

V12 Vo1 < Id.

More general results on systems with input-to-output practical stability
(I0pS) properties can be found in [Jiang, Teel & Praly’ 94].



NETWORK SMALL-GAIN THEOREMS

Consider a large-scale dynamic network: for 1=1,...,n,
X, = L,(X, Yy, Vareeas Vo n Uy)
X, = T,(X,, Vi, Yar--er ¥s Uy)

Xn = 1:n(Xn’ yl’ y2"“’ yn—l’un)
with output maps
y; = hi(X).

Assume that each i-th subsystem is UO with zero-offset and I0S
with Uj, Y ( J =1 ) as the inputs and Yy, as the output.
Specifically, there exist g e L, and yi v e K {0} such that

|y (D) [ max,.; {/Bu (1% (0)],1), Yij (Il Yi "[O,t])’ (L ||oo)}

“Vector small-gain”, see Karafyllis/ZPJ’ 11



HERE, WE PRESENT ONLY “CYCLIC-SMALL-GAIN” THEOREM

|y (@) I< max g, {83 %0) 1), 7 (1 Y o) 71 (1 U 1)}

A digraph 1s employed to represent the gain interconnection
structure of the dynamic network. The dynamic network 1s UO and
IOS if the composition of IOS gains along every simple cycle in the
gain interconnection digraph is less than the identity function.

Y12 0721 < 1d
713 © Y31 < 1d

713 © 732 0721 < 1d
(cyclic-small-gain condition)

[Jiang & Wang 2008]
Lyapunov-based cyclic-small-gain results ; see [Liu, Hill & Jiang 2011].



NETWORKS WITH INTERCONNECTION TIME-DELAYS

Consider a dynamic network:
X () = f00(0), X, (E—735), X (T —733), -, X, (T —7,), U (1))
X, (1) = 1,06 (1), X (t—751), Xs (E = 755),. . X, (T = 75,), Uy (1))

Xo () = T, (%, (0, X (t=70), %, (T =75),0 ., X (T - Tn(n—l))’ u,(t))

where 7,:R, —[0,6] for 1# ] representsthe
interconnection delay from the j-th subsystem to the i-th subsystem
with constant @ > 0 being the largest time-delay.

Assume that each i-th subsystem with T(y = 0 is ISS with X for
J#1 and U, as the inputs:

@< max{ A0 10,7, (%] )7 (Jull. )}

with g ekL, 7,7 € KU{0}.



CYCLIC-SMALL-GAIN THEOREM FOR NETWORKS WITH
INTERCONNECTION DELAYS [SEE TIWARI, WANG & JIANG’ 12]

If the cyclic-small-gain condition is satisfied, then the dynamic
network with interconnection time-delays is ISS:

)] max {B(x(0)]_, 0.7 (u].)

with fekL and 7;' e KU{0}

Intuitively, sice X (t—7)| < o

one may consider the time-delay components as subsystems with
the identity gain.

Vji Id . ji
X; > Xj — Xi > x. )

W
2




SUBSYSTEMS WITH STATE TIME-DELAYS

Consider a dynamic network:
Xi (t) — fi (Xi (t)’ Xl(t _Til)’ AR Xn (t _Tin)’ ui (t))1 I :11 "
where 7; R, —>[0,0] represents the time-delays.

For 1=1...,n  assume that system Z = f.(z,v,,...,V.,W)
1s ISS with V,...,V_,W. as the inputs:

2,0 < max | A (2 00,74 (M) 7 ()
with B eKL, yy,7 € KU{0}.



SUBSYSTEMS WITH STATE TIME-DELAYS (CONT'D)

The dynamic network 1s ISS if Vi < Id for1=1...,n and 7 for | # j
satisfy the cyclic-small-gain condition.

Tij
/1N
Vii| 1d

NS NS

— Xj —— — — Xj ——

SN 7N

Remarks:

When reduced to single systems, the small-gain result is in
accordance with the Razumikhin-type result first developed in [Teel
98].

There are also IOS cyclic-small-gain results for dynamic networks
with time-delays [Karafyllis & Jiang 07], [Tiwari, Wang & Jiang 12},



SOME APPLICATIONS OF DISTRIBUTED CONTROL

o Sensor networks

[Ogren, Fiorell1 & Leonard 2004]

o Coordination and formation control of vehicles

[Tanner, Jadbabaie & Pappas 2003], [Ren,
Beard & Atkins 2007], [Jadbabaie, Lin &
Morse 2003]

o Chemical processes
[Camponogara, Jia, Krogh & Talukdar 2002]

o Smart power grids

[Xin, Qu, Seuss & Maknouninejad 2011]




RECENT DEVELOPMENTS IN DISTRIBUTED CONTROL

o Lyapunov methods
[Lin, Francis & Maggiore 2007], [Sh1 & Hong 2009],
[Ogren, Egerstedt & X. Hu 2002]

o Passivity approach
[Arcak 2007]

o Linear algebra and matrix theory
[Fax & Murray 2004], [Cortes, Martinez & Bullo
9006], [Ren & Beard, 2007], [Qu, Wang & Hull 2008]

o Output regulation theory
[Wang, Hong, Huang & Jiang 2010], [Wieland,
Sepulchre & Allgower 2011], [Su & Huang 2012]

o “Network Small-Gain theory” (in this talk)




BACK TO THE DISTRIBUTED CONTROL PROBLEM

Each i-th agent (1<1< N) takes the disturbed output-
feedback form:

Xii = Xi(j+1) +Aij(yi’wi)’ 1< )<
A

Xitn+1) = U;

Yi = X

where [X;,...%, ] =% eR"withX; €R @A<j<n )isthe
state, U € R 1s the control input, Yy, €R is the (measured )
output, , ¢ R™ represents external disturbances, and A;
(1< j<n ) are unknown locally Lipschitz functions.

'

S

The dynamics of the agents may not be identical.

See, e.g., [Krstic, Kanellakopoulos & Kokotovic 1995] for early
control results of systems in such form.



PROBLEM FORMULATION: OBJECTIVE AND ASSUMPTIONS

Objective: To develop a class of distributed controllers for the multi-
agent system based on the available information such that

lim Yi (t) = Yo

t—o

for 1<j<N. Yo iscalled agreement value.

Assumption: For the agreement value Yo and the multi-agent
system, there exists an 2 C IR such that

Yo € Q;
foreach 1<j<N, 1<)<n |

| A (Vi W) — A (¥, 0) < Wi (ILy; - yi”WiT )
for all [yi,WiT ' € R*™ and all Y, € Q, where 174 py € IC, s

known.

If Yy, isavailable to each agent, then the problem can be easily solved with
existing methods.



INFORMATION EXCHANGE TOPOLOGY

+ Neighbor: If y, is available for local control law design for agent i, then agent k is
called a neighbor of agent i. We use N'; to represent the set of indices of the
neighbors of agent i.

* |Information exchange digraph G has N vertices correspondingto the N agents,
and there is a directed arc from vertex k to vertex i if y, € N;.

* Leader and follower: If y, can be used for the control law of agent i, then agent i
is called a leader; otherwise, agent i is called a follower. Denote £ S {1,..., N} as
the index set of the leader agents.



INFORMATION EXCHANGE TOPOLOGY (CONT’D)

The local controller for each 1-th agent will be designed by directly
using Y. :

yi = N 1[2(% V. )+ (Y, — yo)j, forie L

ke,

.:_Z(yI y.), forie{l,...,.N}\ L

| kEN

where N, is the size of N,



THE CASE OF n. =2

To reduce the complexity of discussions, we only consider agents
| Xip = Xip + Ay (Y, W)
Xip = U; + A, (Y, W)

Yi = X
where [X,,%,] =X isthe state, U; €R is the control input, ¥; €R
is the output, X;, is the unmeasured portion of the state, w. e R™

represents external disturbances, and A, ,A,, are unknown
locally Lipschitz functions.

Note: Our design 1s also valid for agents with different and/or higher orders.



A STATE TRANSFORMATION

Define Xill =Yi— Yo ) Xi|2 = Xi» +Ai1(yo,0) and Xi|3 =U; +Ai2(y0'0)
and 1introduce a dynamic compensator

U =V.
Then, g :
. Xip = Xip T AL (Y5 W) — Ay (Y, 0)
Xilz = X;3 + A, (Y, W) — A, (Y, 0)
Xils =V,
y; = X;1

with the output tracking error yi' =Y. —Y, as the new output and V,
as the new control input.

Note: If Y; is available, we can easily design an output-feedback
controller for each agent to achieve the control objective by using
existing methods. But yim instead of Y; 1is available now.



LOCAL NONLINEAR OBSERVERS

éil =&, + LS+ o (&= Yi)
éiZ = &ia + Lia&iy — Lip (S + Linin)

§i3 =V — Li3(§i2 + L, il)

where P, :R—> R is an odd and strictly decreasing function, and

L, L., are positive constants.

With the observer, fil, fiz , é:ig are estimates of Yy X, — LY, and

X, —LisYi , respectively.



DISTRIBUTED NONLINEAR CONTROL LAWS

Using the estimates from the observer, the distributed control
law for agent i is in the form of

€1 = é:il

€, = §i2 - il(eil)
€3 = é:is - iz(eiz)
V; = Ki5(€3).

wherex,, k;,, &, are continuously differentiable, odd, strictly
decreasing and radially unbounded functions.



SOLUTION TO DISTRIBUTED OUTPUT-FEEDBACK CONTROL

If L#£D and gc has a spanning tree with the leader agents as the
roots, then with the proposed distributed observer and the distributed
control law, all the signals in the closed-loop distributed system are
bounded, and the outputs Y; 's can be steered to within an arbitrarily
small neighborhood of Yo - Moreover, if the system 1s disturbance-free,
then each output Y. asymptotically converges to Vo

Leader —>

/

Follower

[Liu & Jiang 2016]



SKETCH OF PROOF: THE CONTROLLED AGENTS

By using the definitions of Yi and Yi , we have

yi' =Y =0, Z Y
. keN;
where 6, = " for ie £ and 5_:i for ie{l,....N}\L
i " N

l}:ﬂ
; . . — !
Vi | Ui system | Yi 4 Yi,

k4
W

4 ﬂ- f
Yi Mo Oj Zkeﬁ"f Yk
\_/

F

local observer <

local control law




SKETCH OF PROOF: I0S OF EACH CONTROLLED AGENT

Denote Z, =[x ,X X .,&1,&5.&:] as the internal state of the controlled
agent system.

With the well designed distributed observers and distributed control laws,
each nonlinear agent can be rendered to be UO and I10S, and satisfies

N.
0= ZO t k" N[0,t i 0t f E
|y (1) [< maX{ﬁ(l o b7 N aw||¥)£[g£} ori e
| y; (t) [< max {:B. (1 Zio 1), &y dH¥ i) 7 (L W "[O,t])}forl e{l,....N}\L

where 'B e KL
and Z_<N

keN; a|k

, 7. €K, can be designed to be arbitrarily small,

The closed-loop multi-agent system 1s a network of IOS systems.



A SMALL-GAIN RESULT IN DIGRAPHS

*, Assign &, to the directed arc (k,i) in the information exchange digraph G° and
denote A, as the product of the @ along aloop O in digraph G°.

» Fori=1...,N,thesignaly; =Y — Y, practicallyconverge to zero if
— Foreachloop ( through vertices | c [ ,

N (1)
<1

%o N +1

— Foreachloop O not through any one of vertices | € [ ,

A <1 (2

Leader—~>

One can find appropriate &;, 1€l
to satisfy the cyclic-small-gain
condition (1)-(2) if the digraph G°
has a spanning tree with vertices

7

Follower
as roots.




ROBUSTNESS TO TIME-DELAY

If there are information exchange delays, the y" available to the
control of agent 1 should be modified as

yi' ()— (Z(y.(t) Y (t—7, (1) + (y; (t) - yo)j forie £

keN

yim(t)_ Z(Y.(t) Y (t=7 (1)) forie{l,....N}\L

| kEN

where 7. -R, —> R, represents time-delays of information
exchange

Suppose there existsa 7 >0 such that, for i=1...,N, 7, (1) <7
ke N, holdsforall t >Q .

The main result of distributed output-feedback control still holds,
based on the time-delay version of the cyclic-small-gain theorem.
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CONCLUDING REMARKS

In this talk, we have introduced

Several cyclic-small-gain results for dynamic networks with
time-delays

An application to distributed output-feedback control of
uncertain nonlinear multi-agent systems

Future challenges in distributed control include
Wider classes of nonlinear systems
Systems with physical interconnections

Applications to multi-vehicle systems, smart power grids,
etc.

BIT Workshop, July 24, 2014




Acknowledgements:

e BIT

e Jie Chen + We1 Ren

 T. Liu CGRIbR “H AR Rl #EE%)

Thank You !

BIT Workshop, July 24, 2014




