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WHAT’S NEW IN OUR WORK?WHAT S NEW IN OUR WORK?

N id i l • Non-identical agents;

• Nonlinear  higher dimensional models;• Nonlinear, higher-dimensional models;

• Distributed output-feedback vs. state-feedbackp
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DISTRIBUTED CONTROL STRUCTURE

Communication links for coordination
Physical interconnections or autonomous 4



Basic Idea: 
Transform a distributed control problem into a 
stabilization problem of dynamic networks:
• Nonlinear dynamics
• UncertaintiesUncertainties
• Time-delay



INPUT-TO-STATE STABILITY (ISS)

Consider a nonlinear control system

( )x f x u
where                               is a locally Lipschitz function 
and satisfies                    .

( , )x f x u
: n m nf    

(0 0) 0f and satisfies                    .

The system is said to be input-to-state stable (ISS) if 

(0,0) 0f

for all          , where                and            .   Function          
( ) max{ ( (0) , ), ( )}x t x t u 




0t      ,
is called ISS gain.              stands for the essential 
supremum norm.

    
ǁ ǁ

[Sontag, TAC’ 89, 90]
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ISS, NONLINEAR SMALL-GAIN THEOREM

Consider an interconnected system

1 1 1 2 1( , , )x f x x u

Assume that each      -subsystem is ISS:

1 1 1 2 1

2 2 2 1 2( , , )x f x x u
ix

where                                   

i

    (3 ) 3( ) max ( (0) , ), , u
i i i i i i i ix t x t x u  

  

  ( )
u  where               ,                    .

The interconnected system is ISS with              as the 
i t if

i  (3 ) ,  i i i  

1 2( , )u u
input if

i.e.,
12 21( ( )) ,   0,s s s    

12 21 .Id  
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SMALL-GAIN THEOREM FOR INPUT-TO-OUTPUT STABLE
(IOS) SYSTEMS

Consider an interconnected system composed of two 
subsystems: for            ,1, 2i 

( ) ( )f h
Assume that each subsystem is unboundedness 

3( , , ),   ( ).i i i i i i i ix f x u y y h x 

observable (UO) with zero-offset and IOS:
 3 [0, ] [0, ]| ( ) | | (0) |O

i i i i t i tx t x y u   ǁ ǁ ǁ ǁ

Th  i t t d t  i  UO d IOS ith               

 (3 ) 3| ( ) | max (| (0) |, ),  ( ),  ( )u
i i i i i i i iy t x t y u      ǁ ǁ ǁ ǁ

( )u uThe interconnected system is UO and IOS with               
as the input if

1 2( , )u u

12 21 .Id  12 21 

More general results on systems with input-to-output practical stability
(IOpS) properties can be found in [Jiang, Teel & Praly’ 94].
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NETWORK SMALL-GAIN THEOREMS

Consider a large-scale dynamic network: for                     ,1, ,i n 

1 1 1 2 3 1( , , , , , )
( )

nx f x y y y u
f

 
2 2 2 1 3 2( , , , , , )

( )

nx f x y y y u

f

 



with output maps
1 2 1( , , , , , )n n n n nx f x y y y u 

( ).i i iy h x
Assume that each i-th subsystem is UO with zero-offset and IOS 
with       as the inputs and       as the output. 
Specifically, there exist            , and                              such that

( )i i iy

 ,  ji yu j i
iy

i  {0}u   p y, ,i  , {0}ij i   

 [0, ]| ( ) | max (| (0) |, ),  ( ),  ( )u
i j i i i ji t ij iy t x t y u   ǁ ǁ ǁ ǁ 

“Vector small-gain”, see Karafyllis/ZPJ’ 11
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HERE, WE PRESENT ONLY “CYCLIC-SMALL-GAIN” THEOREM

 [0, ]| ( ) | max (| (0) |, ), ( ), ( )ij
u

i j i i i j t i iy t x t y u   ǁ ǁ ǁ ǁ

A digraph is employed to represent the gain interconnection 
structure of the dynamic network. The dynamic network is UO and 
IOS if the composition of IOS gains along every simple cycle in the 
gain interconnection digraph is less than the identity function.

[Jiang & Wang 2008]
Lyapunov-based cyclic-small-gain results ; see [Liu, Hill & Jiang 2011].
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NETWORKS WITH INTERCONNECTION TIME-DELAYS

Consider a dynamic network:

1 1 1 2 12 3 13 1 1( ) ( ( ), ( ), ( ), , ( ), ( ))
( ) ( ( ) ( ) ( ) ( ) ( ))

n nx t f x t x t x t x t u t
f

      
2 2 2 1 21 3 23 2 2

1 1 2 2 1 ( 1)

( ) ( ( ), ( ), ( ), , ( ), ( ))
         

( ) ( ( ), ( ), ( ), , ( ), ( ))

n nx t f x t x t x t x t u t

x t f x t x t x t x t u t

  

  

    

    






where                                 for                  represents the 
interconnection delay from the j-th subsystem to the i-th subsystem 
with constant             being the largest time delay

1 1 2 2 1 ( 1)( ) ( ( ), ( ), ( ), , ( ), ( ))n n n n n n n n nx t f x t x t x t x t u t   

: [0, ]ij   i j

0 with constant             being the largest time-delay.

Assume that each i-th subsystem with                is ISS with        for            
d        th  i t

0 

( ) 0   jx
j i uand       as the inputs:j i iu

    | ( ) | max (| (0) |, ), , u
i i i jij ii ij

x t x t x u  




with               ,                              .
i  , {0}u

ij i   
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CYCLIC-SMALL-GAIN THEOREM FOR NETWORKS WITH
INTERCONNECTION DELAYS [SEE TIWARI, WANG & JIANG’ 12] 

If the cyclic-small-gain condition is satisfied, then the dynamic 
network with interconnection time-delays is ISS:

  [ ,0]1, ,
( ) max ( 0 , ), ( )u

i i
i n

x t x t u


 


 


with                   and                           {0}u
i  

Intuitively, since
[ , )

,( )i ji ix t x



 

 

one may consider the time-delay components as subsystems with 
the identity gain.

12



SUBSYSTEMS WITH STATE TIME-DELAYS

Consider a dynamic network:

1 1( ) ( ( ), ( ), , ( ), ( )),   1, ,i i i i n in ix t f x t x t x t u t i n      

where                            represents the time-delays.

1 1( ) ( ( ), ( ), , ( ), ( )), , ,i i i i n in if

: [0, ]ij  

For                     , assume that system
is ISS with                         as the inputs:

1, ,i n  1( , , , , )i i i n iz f z v v w 

    ( ) ( (0) ) w

1, , ,n iv v w

with                  ,                                   .

    1, ,
( ) max ( (0) , ), , w

i i i ij j i ij n
z t z t v w 

 


i  , {0}w
ij i   j
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SUBSYSTEMS WITH STATE TIME-DELAYS (CONT’D)

The dynamic network is ISS if                 for                  , and        for           
satisfy the cyclic-small-gain condition.

Idii  1, ,i n  ij i j

Remarks:
 When reduced to single systems, the small-gain result is in 

d  i h h  R ikhi  l  fi  d l d i  [T l accordance with the Razumikhin-type result first developed in [Teel 
98].

 There are also IOS cyclic-small-gain results for dynamic networks 
ith ti d l  [K f lli & Ji  07]  [Ti i  W  & Ji  12]with time-delays [Karafyllis & Jiang 07], [Tiwari, Wang & Jiang 12].14



SOME APPLICATIONS OF DISTRIBUTED CONTROL

 Sensor networks
[O  Fi lli & L d 2004][Ogren, Fiorelli & Leonard 2004]

 Coordination and formation control of vehicles
[T  J db b i  & P ]  [R  [Tanner, Jadbabaie & Pappas 2003], [Ren, 
Beard & Atkins 2007], [Jadbabaie, Lin & 
Morse 2003]

Chemical processes
[Camponogara, Jia, Krogh & Talukdar 2002][C p g , , g ]

 Smart power grids
[Xin, Qu, Seuss & Maknouninejad 2011][Xin, Qu, Seuss & Maknouninejad 2011]

15



RECENT DEVELOPMENTS IN DISTRIBUTED CONTROL

 Lyapunov methods
[Lin, Francis & Maggiore 2007], [Shi & Hong 2009], 
[Ogren, Egerstedt & X. Hu 2002][Ogren, Egerstedt & X. Hu 2002]

 Passivity approach
[Arcak 2007][Arcak 2007]

 Linear algebra and matrix theory
[Fax & Murray 2004], [Cortes, Martinez & Bullo [Fax & Murray 2004], [Cortes, Martinez & Bullo 
2006], [Ren & Beard, 2007], [Qu, Wang & Hull 2008]

Output regulation theoryp g y
[Wang, Hong, Huang & Jiang 2010], [Wieland, 
Sepulchre & Allgower 2011], [Su & Huang 2012]

 “Network Small-Gain theory” (in this talk)
16



BACK TO THE DISTRIBUTED CONTROL PROBLEM

Each i-th agent                    takes the disturbed output-
feedback form:

(1 )i N 

( ) 1x x y w j n     ( 1)

( 1)

( , ),  1 

i

ij i j ij i i i

i n i

x x y w j n

x u




    



where                                    with              (               ) is the 

1i iy x

[ ] : inTx x x  ijx  1 ij n where                                    with              (               ) is the 
state,            is the control input,           is the (measured ) 
output,              represents external disturbances, and          's 
(              ) are unknown locally Lipschitz functions  

1[ , , ] :
ii in ix x x   ijx  1 ij n 

iu  iy 
win

iw  ij
1 j n (              ) are unknown locally Lipschitz functions. 

The dynamics of the agents may not be identical.
1 ij n 

See, e.g., [Krstic, Kanellakopoulos & Kokotovic 1995] for early 
control results of systems in such form.
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PROBLEM FORMULATION: OBJECTIVE AND ASSUMPTIONS

Objective: To develop a class of distributed controllers for the multi-
agent system based on the available information such that

lim ( )y t y

for                 .          is called agreement value.

0lim ( )it
y t y




1 i N  0y

Assumption: For the agreement value and the multi-agent 
system, there exists an such that

0y
 



 for each                  ,                  ,
0 ;y 

1 i N  1 ij n 

| ( ) ( 0) | (| [ ] |)T Ty w y y y w   
for all and all             , where is 
known.

| ( , ) ( ,0) | (| [ , ] |)
ijij i i ij i i i iy w y y y w     

1[ , ] winT T
i iy w  iy  

ij
 

If          is available to each agent, then the problem can be easily solved with 
existing methods.

0y
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INFORMATION EXCHANGE TOPOLOGY



19



INFORMATION EXCHANGE TOPOLOGY (CONT’D)

The local controller for each i-th agent will be designed by directly 
using       :m

iy
 

0
1 ( ) ( ) ,   for 

1

1 ( ) f {1 } \

i

m
i i k i

ki

m

y y y y y i
N

N



 
     

  










where          is the size of           

1 ( ),   for {1, , } \
i

m
i i k

ki

y y y i N
N 

   




N iwhere          is the size of           .iN i

20



THE CASE OF 2in 

To reduce the complexity of discussions, we only consider agents 
with             :2in  ( )x x y w  i

1 2 1

2 2

1

( , )
( , )

i i i i i

i i i i i

i i

x x y w
x u y w
y x

  
  





where                         is the state,             is the control input,               
is the output          is the unmeasured portion of the state                      

1i iy

1 2[ , ] :T
i i ix x x iu  iy 

x winis the output,         is the unmeasured portion of the state,                     
represents  external disturbances, and                    are unknown 
locally Lipschitz functions.

2ix wi
iw 

1 2,i i 

Note: Our design is also valid for agents with different and/or higher orders.
21



A STATE TRANSFORMATION

Define                      ,                                      and                                     
and introduce a dynamic compensator

'
1 0i ix y y  '

2 2 1 0( ,0)i i ix x y   '
3 2 0( ,0)i i ix u y  

Then,

.i iu v

' ' ( ) ( 0) Then,
1 2 1 1 0

' '
2 3 2 2 0

'

( , ) ( ,0)

( , ) ( ,0)
i i i i i i

i i i i i i

x x y w y

x x y w y

   

   



 3

' '
1

i i

i i

x v

y x




'with the output tracking error                      as the new output and            

as the new control input.
'

0i iy y y  iv

Note: If        is available  we can easily design an output-feedback '
iyNote: If        is available, we can easily design an output feedback 

controller for each agent to achieve the control objective by using 
existing methods. But         instead of         is available now.

iy
m
iy

'
iy
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LOCAL NONLINEAR OBSERVERS

1 2 2 1 1 1( )

( )

m
i i i i i i iL y

L L L

    

    

   


2 3 3 1 2 2 2 1

3 3 2 2 1

( )

( )
i i i i i i i i

i i i i i i

L L L

v L L

    

  

   

  

where                     is an odd and strictly decreasing function, and               
are positive constants.
1 :i  

2 3,i iL L

With the observer,                      are estimates of                                            
, respectively.

1 2 3,,i i i   22
an, di i ii

y x L y 

33 i ii
x L y 
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DISTRIBUTED NONLINEAR CONTROL LAWS



1 1i ie 

2 2 1 1

3 3 2 2

( )
( )

i i i i

i i i i

e e
e e

 
 

 
 

3 3( ).i i iv e

1 2 3, ,i i i  

24



SOLUTION TO DISTRIBUTED OUTPUT-FEEDBACK CONTROL

If                    and            has a spanning tree with the leader agents as the 
roots, then with the proposed distributed observer and the distributed 

l l  ll h  i l  i  h  l d l  di ib d   

  c

control law, all the signals in the closed-loop distributed system are 
bounded, and the outputs           's can be steered to within an arbitrarily 
small neighborhood of          . Moreover, if the system is disturbance-free, 
then each output            asymptotically converges to       .y 0y

iy

yt e  eac  output            asy ptot ca y co ve ges to       .iy 0y

[Liu & Jiang 2013]25



SKETCH OF PROOF: THE CONTROLLED AGENTS

By using the definitions of          and        , we have
m
iy '

iy

h                        f              d               f                                  
i

m
i i i k

k

y y y 


  


1 1where                       for             and               for                                 
.

1
1i

iN
 

 i 1
i

iN
  {1, , } \i N  
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SKETCH OF PROOF: IOS OF EACH CONTROLLED AGENT

Denote                                              as the internal state of the controlled 
agent system.

1 2 31 2 3
[ , , , , , ]T

i i i ii i i
Z x x x     

g y

With the well designed distributed observers and distributed control laws, 
each nonlinear agent can be rendered to be UO and IOS, and satisfies

 

0 [0, ] [0, ]| ( ) | max (| |, ), ( ), ( )  for ,
1i i i k t i

i
ik

i
i t

N ay t Z t y w i
N

  

 
  

 
ǁ ǁ ǁ ǁ 

IOS gain

where               ,                     can be designed to be arbitrarily small, 

 0 [0, ] [0, ]| ( ) | max (| |, ), ( ), ( )  for {1, } \,iki i i k t i i ty t Z t w i Na y    ǁ ǁ ǁ ǁ 

i 
i 

1and                       .1

i

i
k ik

N
a




The closed loop multi agent s stem is a net ork of IOS s stemsThe closed-loop multi-agent system is a network of IOS systems. 27



A SMALL-GAIN RESULT IN DIGRAPHS


c

cika
OA

ika

'
0i iy y y 1, ,i N 

O i
1NA

O i
1

1O
NA

N




1OA 

Leader
One can find appropriate             
to satisfy the cyclic-small-gain 

O

ika i

Follower

y y g
condition (1)-(2) if the digraph       
has a spanning tree with vertices               
as roots.

c
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ROBUSTNESS TO TIME-DELAY

If there are information exchange delays, the available to the 
control of agent i should be modified as

m
iy

0
1( ) ( ( ) ( ( ))) ( ( ) )    for 

1

1
i

m
i i k ik i

ki

y t y t y t t y t y i
N




 
      

  





where represents time-delays of information 
exchange

1( ) ( ( ) ( ( )))   for {1, , } \
i

m
i i k ik

ki

y t y t y t t i N
N




    




:ik   
exchange.

Suppose there exists a such that, for                ,                    
holds for all           .

0  1, ,i N 

ik
( )ik t 

0t 

The main result of distributed output-feedback control still holds, 
based on the time-delay version of the cyclic-small-gain theorem.

i 0t 
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CONCLUDING REMARKS

In this talk, we have introduced
 Several cyclic-small-gain results for dynamic networks with 

time-delays
 An application to distributed output-feedback control of  An application to distributed output feedback control of 

uncertain nonlinear multi-agent systems

Future challenges in distributed control includeFuture challenges in distributed control include
 Wider classes of nonlinear systems
 Systems with physical interconnections
 Applications to multi-vehicle systems, smart power grids, 

etc.
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