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Distributed Optimization: 
Model & Problem 

• A network of m agents with node set N ={1,…,m} 

     -- cooperatively solve 

 

 

 

 

 

     -- local cost function                  is convex and known to agent i  

      --                  is convex;  hj is affine; local constraint  Xi  is convex 

and closed;  X  is nonempty 
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Motivation of distributed optimization 
and control 

• Global information is difficult to access in large-scale networks, and 

centralized algorithms are not robust against unexpected changes in 

topology 

 

• “Big Data” problems consist of millions or billions of training samples, 

and the data is often collected and stored in a distributed manner 

 

• Distributed algorithms only rely on local observation and information, 

hence can react efficiently to time-varying topology and deal with 

large-scale problems 

 

• Applications: task assignment, congestion control, distributed                     

                           estimation, machine learning 
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Examples: Distributed Localization and 
Coverage Control 

Cooperative localization 
Coverage Control 
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Basics of convex functions 

• Convex set C:  

• For a closed and convex set                                                    is the 

projection of x onto C          

•                  is convex if 

     A convex function is differentiable almost everywhere. 

• The subdifferential of  f  at x is defined by 

 

     with        called as the subgradient .           is nonempty, compact 

and convex everywhere; as a set-valued map, it is also upper semi-

continuous.  

: nf R R ( (1 ) ) ( ) (1 ) ( ),  0 1,  , nf tx t y tf x t f y t x y R        
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(1 ) ,  , ,0 1tx t y C x y C t      
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Primal and dual problem 

• Primal problem 

 

     with optimal value       and optimal point  

 

• Dual problem 

 

 

 

     with optimal value       and optimal point 

 

•               and               is the optimal pair if and only if  

                                                  (Saddle-point Condition) 

min ( ),  s.t.  ( ) 0,  ( ) 0, F x g x h x x X  

1 1max ( ),  s.t.  ( ,..., , ,..., ) ' s t s
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Subgradient Methods 

• Projected subgradient method for primal problem with set-constraint  

 

 

• Projected subgradient method for dual problem 
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No guarantee for convergence in 

many applications, esp when the 

minimization step fails  



Variants of dual subgradient method 

•  Projected subgradient method to approximate the saddle point 

         (Nedić & Ozdaglar, 2009) 

 

 

 

• Augmented Lagrangians and the method of multipliers 
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Quadratic penalty added to 

guarantee the minimization 

step, and improve convergence 

properties 



• Alternating Direction Method of Multipliers (ADMM) 
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Introduction to Consensus 

• Distributed consensus: Networked agents to reach a common state 

by exchanging information with neighbors 

 

 

 

 

 

 

• Reformulated as an optimization problem 

 

 

• Applications: coordination, rendezvous, formation control, swarming 
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Distributed optimization by decomposition 
--Incremental subgradient methods 

•  Deterministic algorithm by cycling (Nedic & Bertsekas, 2001)  
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15 A. Nedic and D. P. Bertsekas, "Incremental subgradient methods for nondifferentiable optimization," SIAM Journal 

on Optimization, vol. 12, pp. 109-138, 2001.. 



•  Randomized algorithm 

 

      -- Choosing w(k) from {1,…,m} by probability 1/m (Nedic & 

Bertsekas, 2001) 

      -- Choosing w(k) from a Markov process (Johansson, et. al., 2009) 
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16 B. Johansson, M. Rabi, and M. Johansson, "A randomized incremental subgradient method for distributed 

optimization in networked systems," SIAM Journal on Optimization, vol. 20, pp. 1157-1170, 2009. 



Distributed ADMM 

• Unconstrained optimization (fi strongly convex and coercive) 

 

 

• Decomposition of primal variables and dual variables 

 

 

     --In a cyclic implementation, node i keeps the primal variable xi and 

dual primal λi and updates the pair with the information from neighbors: 

 

 

 

     --A similar scheme also applies in a general connected network. 

     --           respectively converge to the optimal pair 
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Distributed Optimization by using 
consensus method 

• Reformulation of the problem 

 

 

 

 

 

• An asymptotic solution of the problem 
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• Distributed projected subgradient method with set constraint but 

without inequality constraint (Nedic, et. al., 2010; Johansson, et. al., 

2008) 

 

 

 

       

 

      -- Xi=X; bounded subgradients 

      -- Non-degenerate weights: 

      -- Doubly stochasticity: 

      -- Periodically jointly strongly connected topology 

      -- Non-summable but square-summable stepsize: 
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• Distributed primal-dual subgradient method to approximate the 

saddle point (Zhu & Martínez, 2012) 

     -- Step 1: Averaging 

 

 

     -- Step 2: Projection of subgradients 

      

          

*
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20 M. Zhu and S. Martínez, "On distributed convex optimization under inequality and equality constraints," Automatic 

Control, IEEE Transactions on, vol. 57, pp. 151-164, 2012. 



Distributed Optimization in Other 
Scenarios 

• Quantization effect (Rabbat & Nowak, 2005) 

• Asynchronous communication (Nedic, 2011) 

• Random communication graph (Lobel & Ozdaglar , 2011) 

• Stochastic subgradient errors (Ram et. al., 2010) 

• Approximate projection (Lou et. al., 2012) 
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Motivation 

• In many practical problems, consensus is required to meet some 

(constrained) optimal criterion, e.g. a group of UAVs seeking for a 

rendezvous location in some presubscribed area while minimizing 

the total travelling distance 

• The algorithm of distributed optimization cannot be applied directly: 

in numeric calculation, the projection of each agent’s state onto the 

constraint set is feasible, but a moving agent is unable to move into 

the constraint set immediately 

• Special cases 

     -- Minimizing the sum of local cost functions with a nonempty 

intersection of optimal sets (G. Shi, et.al, 2012) 

     -- Computing the intersection of convex sets (G. Shi, et.al, 2013) 

23 
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Distributed optimal control with a 
common set constraint 

• Problem formulation 

• Distributed control input 

 

• The optimal consensus based control can be achieved 

asymptotically  under the following assumptions: 

      -- X closed and convex 

      --  fi convex and coercive 

      -- balanced, uniformly jointly connected graph 

     -- 

     --   

• Difference with the projected subgradient method: parallel projection 

term; no bound for subgradient term;  
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An insight of the problem 
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X

*(minimum point of )iix f

consensus 
projection 

diminishing subgradient *x

--Three different forces: consensus, projection, diminishing but    

   persistent subgradient 

-- Once the solution is bounded, the first two forces are dominant and 

   lead to a consensus in the constraint set; the last one asymptotically   

   drives the agents to the optimal set within the constraint set 



Sketch of Proof 

• 1. Boundedness of the solution 

 

 

 

 

 

 

• 2. Constraint set convergence 
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• 3. Consensus analysis 

 

 

 

 

• 4. Optimal set convergence 
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Fixed Unbalanced Graph Case 

• Algorithm based on matrix scaling technique 

 

 

 

 

 

•                               converges to the left eigenvector of Laplacian 

matrix corresponding to eigenvalue 0 

• Under the same assumption, the optimization problem can be 

solved under unbalanced digraph 
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Simulation Results 

1 2 3 4(0) [0,0],  (0) [2, 1],  (0) [3,3], (0) [1,4],x x x x    

Topology: 1 2 3 4    ( ) | (0) |     (0,1)i i i if x x x X B     

0.8( ) 1/ [ ln( 1)] neither integrable nor square summablet t t  
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Convergence Speed 

• If F(x) is strongly convex with parameter c>0, i.e. 

 

 

     then the optimal point      is unique and 

        

       (1) 

 

        

       (2) 
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Further discussion 

• Different constraint  Xi  for different agent is to be considered 

• The inclusion of an integral term may accelerate the convergence 

speed 

      -- An example of unconstrained optimization (B. Gharesifard & J. 

Cortés, 2014) 
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A discrete-time implementation 

• Assumptions: 

     --A1: X closed and convex 

     --A2:  fi convex and coercive 

• Algorithm 

 

 

 

• With a fixed graph and Assumptions A1, A2, the above algorithm 

asymptotically solves the distributed optimization problem with a 

sufficiently small step size h if and only if 

     -- The graph is balanced and contains a spanning tree. 

     --  
1

lim ( ) 0,  ( )k

k

k k 






  
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Discussion on the Necessity Part 

• The graph has to contain a spanning tree. Otherwise the nodes can 

be divided into two groups with no communication between them. 

• The graph has to be balanced. Otherwise the convergence value 

becomes the solution of 

 

 

where                               is a left eigenvector of Laplacian matrix 

corresponding to eigenvalue 0 

• If                      , the set constraint cannot be fulfilled. 

• If                     , the states prematurely stop outside the optimum set 

1
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Convergence Speed 

• The following hold if F(x) is strongly convex with parameter c>0 : 

* 2

2

( ) ( 1)
(1) || ( ) || ( ( )) when limsup /
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Event-Triggered Based Algorithm 

• Event-based algorithm (even-triggered comm.) 

 

 

 

• Trigger function for 𝑘𝑡+1: 

• Under the same assumption and 𝐹 is strongly convex, the 

optimization problem is solved with static error 𝑐𝑀 (𝑐 > 0 is a 

constant) 

( ) ( ) ( ( ( )) ( ) ( ) ( ( )))
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Random Optimization 

• Consider noises exist in calculating subgradient 

 

 

• Assumption: 

- Noises          are zero mean white noises with bounded variances 

- The objective functions are globally Lipschitz 

• The problem is solved in mean square sense 

( ) ( ) ( ( ( )) ( ) ( ) ( ( ) ( )))
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MPC based Formation Flight Control 

MPC offers a number of unique advantages: 

 

 Deal with the constrained MIMO dynamics of the UAV system by 

directly using its mathematical model in the control loop design 

 

 Consider the formation flight kinematics and dynamics of the 

UAV as an entire system, which results in an integrated formation 

flight framework; 

 

 Give a local path planning function by combining future reference 

and the environment information such as obstacles 
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Existing Works 

 The update sequence of the UAV 

 Richards, A. and J. How, 2004 

 Kuwata, Y. and J.P. How, 2010 

 Chung, H., 2006 

 Keviczky, T., F. Borrelli, K. Fregene, D. Godbole, and G. Balas, 

2008 

 Collision avoidance scheme in the MPC framework 

 Xu, B., D.J. Stilwell, and A.J. Kurdila, 2010 

 Kuwata, Y. and J.P. How, 2010 

 Bellingham, J., M. Tillerson, M. Alighanbari, and J. How, 2002 

 

 The safety flight maneuver envelope is not guaranteed 
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Scenario & Objectives 

 Only the leader is given the maneuver commands 

 The follower aircraft should: 

 Maintain the formation by 

 Following the changes in the leader states 

 Suppressing disturbances 

 Avoid collision with each other and with external obstacles 

Objectives: 
Develop formation flight control system based on model predictive 

control (MPC) to enable collision free formation flight. During the formation 

flight, all the agents should be able to keep the specified formation in the 

presence of disturbances and uncertainty while avoiding collision with 

each other and with the obstacles.. 
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UAV 1 UAV 2 UAV 3 
… 

The Big Picture 

Multiplexed MPC 

UAV 1 

Robust MPC 

UAV 2 

Robust MPC 

UAV 3 

Robust MPC 

… 
Robust MPC 

Collision Avoidance 

Modified Robust MPC Feedback linearization 

Reachability Algorithm + NN Augmentation   
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Two-Layer Formation Flight Framework 
 The MPC controller generate the optimized collision-free state 

reference trajectory which satisfies all kind of constraints and robust to 

the input disturbances  

• two modifications, i.e. the control input hold and variable prediction 

horizon are made and combined to allow the real-time formation 

flight implementation 

 Robust feedback linearization controller tracks the optimal state 

reference and suppress any tracking errors during the MPC update 

interval 
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Decentralized Formation Control Scheme 

 Formation controller resides on top of the individual UAV 
autopilot 

 Communication topology: each UAV only exchanges 
information with its neighbors 
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Formation Flight System under MMPC 

Under MMPC scheme, the whole formation system can be represented as 

a periodic linear system with one UAV’s input at a time: 
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Formation Flight System under MMPC 

In order to make the whole linear periodic system closed-loop 

stable by using the MMPC scheme, the following two 

additional terms need to be added to the optimization 

problem formulation: 
 

Terminal cost term: 

 

 

 

Terminal states constraints: 
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Collision Avoidance Extension 

 In the current MPC collision avoidance scheme: 

 Size of obstacles usually not included in the constraint 

formulation  

 Trajectories may penetrate small obstacles 

 Lack of treatment for pop-up obstacles  

 Obstacles are assumed to be known a priori 
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Collision Avoidance Modification 

 Proposed improvement: 

 Combine the  temporal (time) and spatial (sensor range) 

horizons 

 Add position constraint to prevent the next vehicle 

predicted position to penetrate the small obstacle 
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NTU Swarming Research 
 -- Test-bed Architecture 

Design Based On: 
• PIXHAWK of ETH Zurich 
• Openpilot project 
 

Design Philosophy: 
• High performance 
• Efficiency 
• Ease of development 
• Low cost  

Ground Control Station: 
• QGC 
• Matlab/Simulink 
 

Ideal For: 
• Formation/swarm 
• Vision-based navigation 



   UAV Formation Flight   
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NTU-built drones to fly at S’pore Airshow 

Overview of UAV Show  
 Formation Flight 
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TechX Challenge 2013 
Competition Scenarios 

• Large outdoor arena 
• Multiple indoor settings 
• Rugged outdoor terrains 
• Multiple indoor/outdoor stairs 
• GPS challenged in many locations 
• Multiple robot coordination 
• Search targets 
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Tasks in TechX-Challenge 2013 

1. Outdoor GPS based Navigation and 

obstacle avoidance 

2. Indoor mapping and navigation 

3. Outdoor exploration and target 

identification 

4. Indoor exploration and target 

identification 

5. Entrance and exit of buildings 

6. Searching for staircase and climbing 

7. Communication and report to 

Operation Control Unit 

8. Integration and mission control 
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Robot Platforms 

Tracked Robot 

Wheeled Robots 

Multiple configurations for 

-- Speed to run in a large arena 

-- Overcoming stairs 

Video 54 

../../movies/TechX/TechX_13/ShowVideos/TechX2013.mp4


Key Achievements:  
 Platform designs 

In-house designs for urban and off-road environments with low cost sensor 

suites and communication between robots; 

 

Outdoor mobility 

GPS based outdoor navigation with obstacle avoidance in rugged terrains,  
 
Indoor mobility 

SLAM-based exploration and researching;  
 
Stair climbing and descending 
Laser based confirmation and climbing up and down; 

 

Target identification and engagement 
Stereo vision based identification and confirmation 

 

Outdoor and indoor transitions 

Vision/laser based navigation through building entrances. 

 

Integrated missions 
Functionalities have been successfully integrated. 

 

55 



• TechX Challenges 2013 
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Conclusion 

57 

•   Distributed optimization and control has wide  applications 

•   We studied a distributed optimal control problem based on a  

     consensus approach  

•   Sufficient conditions were given for convergence to the optimal  

     solutions 

•   We also discussed the discrete implementation and convergence rate 

•   Future work include different constraints for different agent. 

•   MMPC based formation flight was discussed and implemented 

•   Distributed MMPC will be investigated for outdoor  UAVs 
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