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Introduction

Spacecraft missions to asteroids are a topic of great

interest for the scientific and engineering communities.

They are the most accessible planetary bodies outside of

the Earth-Moon system, their study can deepen our

scientific understanding of the formation circumstances

of the solar system, and in the future they may prove to

be key elements of the exploration infrastructure due to

their mineral composition. They also can prove

hazardous to society, as the impact of an asteroid could

create significant damage on the surface of the Earth.

Thus, many of the world's national space agencies have

sent missions to explore these bodies for scientific and

other purposes.

These motivations have also led to the extensive

study of spacecraft orbital dynamics in the proximity of

these small bodies. In all asteroid rendezvous missions

to date, the asteroids - though small - have been massive

enough to require the attraction of these bodies to be

taken into account. Previous missions have either orbited

these bodies or have used propulsive controls to hover in

their vicinity, essentially nulling the attraction of the

asteroid on average. In this paper, we consider a possible

future situation where the size of the target asteroid is so

small, or the distance of the spacecraft from the asteroid

large enough, to enable the overall attraction of the

asteroid to be neglected.

There are several situations where such a target

asteroid, or such a proximity dynamics, may fit the

overall mission goals. A short discussion of them

follows. First, if the target asteroid is quite small, on the

order of tens of meters, it may be impossible for a

spacecraft to enter direct orbit about it, but instead will

be on a neighboring elliptic orbit about the sun, perhaps

with some perturbation from the small asteroid mass.

The discussion in this paper will show that this motion

can be designed to stay on the sunward side of the
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asteroid, and can vary periodically with an orbit period

of one asteroid year. By adjusting the total acceleration

acting on the spacecraft, it is also possible to place the

spacecraft in an equilibrium point at an arbitrary point

distance from a small asteroid on the sunward side. Also,

if the asteroid is larger, a spacecraft can still be placed

on a similar orbit that does not interact strongly with the

asteroid an instead follows a neighboring heliocentric

orbit that remains in the vicinity of the asteroid. Such a

vantage point may allow for long-term monitoring of the

asteroid, serve as a way-station for storing material to be

used in the exploration of that asteroid, or if its

instruments are properly designed may even be able to

carry out substantive observations of the body. These are

just some simple examples for when the situation

studied in this paper could be of interest.

The paper is structured as follows. First the

fundamental models for motion of a spacecraft about an

asteroid are reviewed, along with the appropriate

equations of motion. Then we consider situations where

the attraction of the asteroid can either be neglected or

relegated to a higher-order perturbation. The governing

equations of motion are derived for these cases and their

general solution discussed. Finally, we make some

application of these equations and discuss situations

where this model of motion could be used.

1 Asteroid and Spacecraft Model

We assume the asteroid has a heliocentric orbit

defined by a semi-major axis a, eccentricity e and

related orbit parameter p. Furthermore, we assume it has

a mean radius of R and a bulk density of ρ, giving it a

total mass of M = 4πρR3 /3 and a gravitational parameter

of μ = GM, where G = 6.672 4 × 10-20 km3 /s2 /kg is the

gravitational constant. In this paper and analysis we

assume that the asteroid is spherical with constant

density. We note that the shape of the body can have a

dramatic effect on proximity orbital dynamics, as

studied in [1], however we do not consider such

complexities here. Thus the gravitational attraction of

the asteroid is simply -μr/r3, where r is the relative

position vector of a point relative to the center of the

asteroid and r denotes its magnitude.

The other significant perturbation we consider is

from the sun, both its gravitational attraction (modeled

as a point mass with μSun = 1.327 × 1011 km3 /s2), and due

to the solar photons that impinge on the spacecraft. As a

simple model we use the one presented in [1], which

gives the solar radiation pressure acting on a spacecraft

to be

aSRP~
(1 + σ ) P0

B d 3
d (1)

where P0 is a solar constant approximately equal to 1 ×

108 kg km3 /s2 /m2, d is the vector from the sun to the

small body, σ is the reflectance of the spacecraft and B is

the mass to area ratio of the spacecraft (in kg/m2) which

controls the relative strength of this perturbation. Typical

values of B range between 10～100 kg/m2. Although the

solar photons also have an effect on the asteroid orbit,

we note that it is quite small relative to the spacecraft,

and thus is neglected herein.

2 Equations of Motion

2.1 Asteroid-Sun Relative Equations of Motion

The derivation of the equations of motion of a

spacecraft in the vicinity of an asteroid, which in turn is

in orbit about the sun, is derived in [1]. The most

relevant form of these equations for analytical study are

taken such that the fundamental frame rotates with the

sun-asteroid line, making that a fixed axis of the system.

If the asteroid's true anomaly about the sun and its time

rate of change is represented as f and f,̇ then the

equations of motion in this rotating frame are given as

r̈ + 2fẑ̇ × ṙ + fẑ̈ × r + f ̇ 2 ẑ × ẑ × r =

-
μ

r3
r + aSRP d̂ +

μSun

d 3 [3d̂d̂ ⋅ r - r] (2)

where r is the position vector of the spacecraft, d̂ is the

unit vector pointing from the sun to the asteroid, and ẑ is

the direction perpendicular to the asteroid heliocentric

orbit plane, and is the axis about which this frame

rotates.

2.2 Scaled Equations of Motion

A standard approach for simplifying these

equations is to introduce the true anomaly as an

independent parameter and to scale the position vector

by the time-varying distance d = p/ (1 + ecosf ),

defining a new position vector R = r/d. Applying this

transformation simplifies the equations of motion to
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R″ + 2ẑ × R′ + ẑẑ ⋅ R′ =

1
1 + ecosf

é

ë
êê -

μ
μSun

R

R3
+ βd̂ + 3d̂d̂ ⋅ R

ù

û
úú (3)

where ()′ represents a derivative with respect to true

anomaly (the new independent variable), the vector R is

dimensionless and β =
(1 + σ ) P0

μSun B
is a non-dimensional

term that represents the strength of the SRP force in

terms of local solar gravitational attraction. Rewriting

the equations in scalar form (assuming that d̂ = x̂) yields

X ′′ - 2Y ′ =
1

1 + ecosf

é

ë
êê -

μ
μSun

X

R3
+ β + 3X

ù

û
úú (4)

Y ′′ + 2X ′ =
1

1 + ecosf

é

ë
êê -

μ
μSun

Y

R3

ù

û
úú (5)

Z ′′ + Z =
1

1 + ecosf

é

ë
êê -

μ
μSun

Z

R3

ù

û
úú (6)

This equation was studied in [2] in a slightly

different form. These equations have a close affinity

with the elliptic restricted 3-body problem, with the

change of moving the origin to the smaller primary, the

addition of Hill's approximation for the effect of the

larger primary, and the effect of the solar radiation

pressure.

Given a solution to these equations, as a function of

true anomaly f, it can be scaled back to a fully

dimensional solution relative to the asteroid center as

r = dR (7)

ṙ =
μSun

p
esinfR +

μSun

p
(1 + ecosf ) R′ (8)

2.2.1 Parameter Values

For the current study it is reasonable to evaluate

representative values for the parameters β and μ/μSun. For

β, we set σ = 0 for convenience and leave B unspecified,

to find

β = 7.5 × 10-4 /B (9)

where B is given in units of kg/m2. Across our range of B

values we see that β = 7.5 × 10-5 → 7.5 × 10-6.

For the ratio of the asteroid and solar GM, we leave

the asteroid density and radius as free parameters. This

provides us with

μ
μSun

= 2.1 × 10-30 ρR3 (10)

where ρ is in kg/m3 and R is in m. While we see that the

magnitudes of these two non-dimensional parameters are

quite different, we shall see next that when appropriately

balanced they yield reasonable values.

Finally, we note that for definiteness when

necessary we assume the asteroid is at approximately 1

AU or ~1.5 × 108 km.

2.2.2 Limits for Gravitational Influence

The current study is specifically interested in when

the attraction of the central asteroid can be neglected, as

an approximation. To analyze this we leverage our

previous study of these equations and the modified Hill

sphere about the asteroid, accounting for SRP on the

spacecraft. The limits of the Hill sphere can be

approximately defined as the distance of the relative

equilibria from the asteroid center. If the SRP effect is

ignored, this results in the well-known equilibrium

points for the Hill problem

x*
± = ±d ( μ

3μSun
)

1/3

= ±13.3ρ1/3 RD (11)

where D is the distance in AU and with y* = z* = 0. For

a typical density of 2 000 kg/m3 this distance becomes

about 168 times the asteroid radius at 1AU.

We are more interested in the case when the SRP

acceleration is large compared to the gravitational

attraction of the asteroid. We can formally represent this

case as β >> μ/μSun /R2. Then (as studied in more detail in

[1~2]) the two equilibrium points become different in

distance from the asteroid, with the sunward side (X < 0)

getting relatively far from the body and the anti-sunward

side (X > 0) getting very close to the body. At lowest

order, the sunward side equilibrium distance is

x*
-~ -

d
3
β = 3.75 × 104 D/B  km  (12)

with y* = z* = 0 again. For a mass to area ratio of 100

kg/m2 this is 375 km away from the body towards the

sun. Note that this point is, to first order, independent of

the asteroid gravitational attraction.

The anti-sunward side equilibrium distance is

x*
+~d

μ
μSun β

= 7.9 × 10-6 ρR3 B  km  (13)

with y* = z* = 0 again. Thus for our typical case of ρ =
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2 000 kg/m3 and B = 100 kg/m2 this is a distance of 3.5 ×

10-3 R3/2 km. When closer to the asteroid than this

distance, the object can sustain orbit about it for at least

a limited time. We see that this equilibrium point will be

at or below the surface of the asteroid when R ≤ 17 m in

size. Even for larger asteroids we note that this distance

is relatively small compared to the sunward equilibrium

point.

2.3 Approximate Equations of Motion

In the following we will formalize our assumption

on the relative smallness of the asteroid gravity by

introducing the parameter ε = μ/μSun. The solution will be

expanded by analytic continuation in this term as R =

R0 + εR1 + ε2 R2 + … following standard techniques[3].

Applying this expansion we find the zeroth order

differential equations to be

X ″0 - 2Y ′0 =
1

1 + ecosf
[β + 3X0 ] (14)

Y ″0 + 2X ′0 = 0 (15)

Z″0 + Z0 = 0 (16)

This is a modified form of the Tschauner-Hempel

(TH) equations, which represent linearized motion about

an elliptic orbit[4-6]. The TH equations can be solved in

closed form, and we show that this version of them can

also be solved with the same technique. A spacecraft's

trajectory avoiding close approaches to the central

asteroid would follow these equations.

The differential equations for the first order

solution can be derived to be

X ″1 - 2Y ′1 =
1

1 + ecosf

é

ë
êê3X1 -

X0

R3
0

ù

û
úú (17)

Y ″1 + 2X ′1 = -
1

1 + ecosf

Y0

R3
0

(18)

Z″1 + Z1 = -
1

1 + ecosf

Z0

R3
0

(19)

These are again a perturbed variation of the

Tschauner-Hempel equations, with a non-homogeneous

term driven by the solution of the zeroth order equations.

The equations of motion for higher-order variations will

have the same linear structure as above, but increasingly

complex expansions of the lower order solutions.

3 Solutions to the Equations

In the following we detail the solution to the zeroth

order equations of motion and give the form of the

solution for higher-order effects.

3.1 Zeroth Order Equations

If we make the substitution X̄0 = X0 +
1
3
β, the

equations fall into the standard TH form, displacing the

center towards the sun by the nominal equilibrium point

distance.

X̄ ″0 - 2Y ′0 =
1

1 + ecosf
3X̄0 (20)

Y ″0 + 2X̄ ′0 = 0 (21)

Z″0 + Z0 = 0 (22)

Then the solution can be expressed in standard

form. In the following we rely on the discussion by [5],

who gives a thorough review of the solutions to the TH

equations.

Define a state vector as Ξ̄0 = [ X̄0,Y0,Z0,X ′0,Y ′0,Z ′0 ].
Then the general orbit solution can be specified as a

linear mapping

Ξ̄0 = Φ ( f,fo)Ξ̄o (23)

where Φ ∈ R6 × 6 is the state transition matrix for the

system. The entries of Φ can be written out in detail as

Φ =

é

ë

ê

ê

ê

ê

ê

ê

ê
êê
ê
ê

ê

ù

û

ú

ú

ú

ú

ú

ú

ú
úú
ú
ú

ú

φXX φXY 0 φXX ′ φXY ′ 0

φYX φYY 0 φYX ′ φYY ′ 0

0 0 φZZ 0 0 φZZ ′

φX ′X φX ′Y 0 φX ′X ′ φX ′Y ′ 0

φY ′X φY ′Y 0 φY ′X ′ φY ′Y ′ 0

0 0 φZ ′Z 0 0 φZ ′Z ′

(24)

where we inserted zeros in all of the cross coupling

terms between the out-of-plane and in-plane terms. The

remaining terms are then, takingfo = 0,

φXX =
1

1 - e
[ 4 + 2e - 3cosf - 3ecos2 f -

3e (2 + e )sinf (1 + ecosf ) L ]
(25)

φXY = 0 (26)

φXX ′ =
1

1 + e
sinf (1 + ecosf ) (27)

φXY ′ =
1

1 - e
[ 2 + 2e - 2cosf - 2ecos2 f -

3e (1 + e )sinf (1 + ecosf ) L ] (28)
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φYX =
1

1 - e
[3sinf (2 + ecosf )

-3(2 + e ) (1 + ecosf )2 L]
φYY = 1 (29)

φYX ′ =
1

1 + e
[cosf (2 + ecosf ) - (2 + e ) ]

φYY ′ =
1

1 - e
[2sinf (2 + ecosf ) -

3(1 + e ) (1 + ecosf )2 L] (30)

φX ′X =
1

1 - e
[ 3sinf + 3esin2f -

3e (2 + e ) (cosf + ecos2f ) L -
ù

û
ú

3e (2 + e )sinf
1 + ecosf

(31)

φX ′Y = 0 (32)

φX ′X ′ =
1

1 + e
[cosf + ecos2f ] (33)

φX ′Y ′ =
1

1 - e
[ 2sinf + 2esin2f -

3e (1 + e ) (cosf + ecos2f ) L -
ù

û
ú

3e (1 + e )sinf
1 + ecosf

(34)

φY ′X =
1

1 - e
[ 6cosf + 3ecos2f

-3(2 + e ) (1 - 2esinf (1 + ecosf ) L ) ] (35)

φY ′Y = 0 (36)

φY ′X ′ =
-2sinf (1 + ecosf )

1 + e
(37)

φY ′Y ′ =
1

1 - e
[ 4cosf + 2ecos2f -

3(1 + e ) (1 - 2esinf (1 + ecosf ) L ) ] (38)

φZZ = cosf (39)

φZZ ′ = sinf (40)

φZ ′Z = -sinf (41)

φZ ′Z ′ = cosf (42)

where we note the function L is defined as

L ( f ) = ∫ df

(1 + ecosf )2
=

μ

p3
t (43)

where t is the time from perihelion. Thus we see that L

will linearly increase in time, and could lead to a secular

drift between the spacecraft and the asteroid.

3.2 Linear Drift in Orbit

It is instructive if we combine all terms that contain

the drift term L, as in general we would like to eliminate

this term on average. This is most easily seen if we

combine the different solution components as

X = -3esinf (1 + ecosf ) [ (2 + e ) Xo +

(1 + e )Y ′o ]L + … (44)

Y = -3(1 + ecosf )2 [ (2 + e ) Xo +

(1 + e )Y ′o ]L + … (45)

X ′ = -3e (cosf + ecos2f ) [ (2 + e ) Xo +

(1 + e )Y ′o ] + … (46)

Y ′ = 6esinf (1 + ecosf ) [ (2 + e ) Xo +

(1 + e )Y ′o ] + … (47)

It is significant to note that the drift appears in the

X, X ′ and Y ′ components as well, a situation that does

not occur for the circular orbit case.

It is simple to see that all of the drift terms involve

the combination of initial conditions (2 + e ) Xo + (1 +

e )Y ′o, and thus choosing this combination to be zero

will ensure that the drift terms do not appear. The

simplest way to ensure this is to choose

Y ′o = -
2 + e
1 + e

Xo (48)

Substituting these initial conditions into the

solutions for X and Y we find

X =
1

1 + e
{ cosf (1 + ecosf ) Xo +

sinf (1 + ecosf ) X 'o} (49)

Y = Yo -
1

1 + e
{ sinf (2 + ecosf ) Xo -

[cosf (2 + ecosf ) - (2 + e ) ] X ′o} (50)

To get a better sense of the geometry of motion, we

can put these equations into the general form of an

ellipse. Doing so then yields the parametric equation

1 =
( )1 + e

2

X 2
o + X '2

o

ì

í

î

ïï
ïï
( X

1 + ecosf )
2

+

æ

è

ç

ç
çç

Y - Yo +
2 + e
1 + e

X 'o

2 + ecosf

ö

ø

÷

÷
÷÷

2ü

ý

þ

ïï
ïï

(51)

From this equation we see that the path of the

spacecraft will follow an "osculating" ellipse that is

centered at X = 0 and Y = Yo -
2 + e
1 + e

X ′o with a

pulsating "size" along the X axis equal to
1 + ecosf

1 + e
X 2

o + X ′ 2
o , and along the Y axis equal to

2 + ecosf
1 + e

X 2
o + X ′ 2

o . We note that the relative extent

of these directions is now(1 + ecosf ) / (2 + ecosf ), and
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varies from (1 + e ) / (2 + e )→ (1 - e ) / (2 - e ) within

one heliocentric orbit of the asteroid. When the drift

term is nulled out we see that the resulting motion is

stable.

Figure 1 shows this relative bounded motion in the

scaled coordinates over one heliocentric period for a

number of different asteroid eccentricities, for a

trajectory chosen in the asteroid orbital plane. Here, at

periapsis the spacecraft is at a fixed location along the

-X axis, which runs vertical. For increasing eccentricity

the relative motion deviates strongly from an ellipse.

Recall that the asteroid is located at the coordinate β/3

along the X axis (in scaled coordinates), so that

depending on the strength of the SRP, the entire relative

trajectory may lie on the sunward side of the asteroid.

3.3 Higher Order Corrections

For solving the first order corrections we note that

the linear part of the equations are satisfied by the state

transition matrix Φ introduced above. The zeroth order

solutions have the form

Ξ0 = Φ ( f,fo) Ξ̄o -
1
3
β

é

ë

ê

ê

ê

ê

ê

ê
êê
ê

ê

ù

û

ú

ú

ú

ú

ú

ú
úú
ú

ú

1
0
0
0
0
0

(52)

and this solution is substituted into the first order

equations of motion given in Eqns. 17～19. We note

that the state transition matrix Φ ( f, fo) is computed

from the form given in Eqn. 24, Φ ( f, 0 ), as Φ ( f, fo) =

Φ ( f, 0 )Φ-1 ( fo, 0 ) = Φ ( f, 0 )Φ (0, fo).

Applying standard variation of constants for non-

homogeneous linear systems we can then express the

first order correction as

Ξ1 = Φ ( f,fo) ∫ ffo
Φ-1 ( f ′, fo) é

ë
ê
ù
û
ú

0
B

df ′ (53)

where 0 is a 3 × 1 zero vector and

B = -
1

1 + ecosf

é

ë

ê

ê

ê

ê

ê

ê

ê
êê
ê
ê

ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú

ú
úú
ú
ú

ú

ú

ú

X0

R3
0

Y0

R3
0

Z0

R3
0

(54)

where the nominal linear solution is substituted into

X0, Y0 and Z0, and combined together into R0 =

X 2
0 + Y 2

0 + Z 2
0 . Higher order solutions can be

generated in much the same way, providing a rigorous

approach to developing an analytical solution to the full

equations of motion.

With this correction term, the full solution to first

order is then

Ξ = Φ ( f,fo)Ξ̄o -
1
3
β

é

ë

ê

ê

ê

ê

ê

ê
êê
ê

ê

ù

û

ú

ú

ú

ú

ú

ú
úú
ú

ú

1
0
0
0
0
0

+ εΞ1 ( f, fo) (55)

We note that this form of the equations holds for

both circular and elliptic cases.

As a specific example we consider the equilibrium

point solution for the circular orbit case. Then the zeroth

order state solution is, identically, Ξ0 = é
ë
ê

ù
û
ú-

1
3
β,0,0,0,0,0 .

The correction term is

Ξ1 =
1

( β/3 )2

é

ë

ê

ê

ê

ê

ê

ê

ê
êê
ê

ê

ê

ù

û

ú

ú

ú

ú

ú

ú

ú
úú
ú

ú

ú

1 - cosf

2sinf

0
sinf

cosf - 1

0

(56)

and the full expression for the time-varying in-plane

positions are

Fig. 1 Bounded motion zeroth order scaled solution for different asteroid

eccentricities. The X axis points up and away from the sun and the Y axis to

the left along the direction of asteroid motion， following usual convention

for the Clohessy-Wiltshire equations. The asteroid will lie at a value X =

β/3 measured from the origin on the plot
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X = -
1
3
β +

ε

( β/3 )2
(1 - cosf ) (57)

Y = 2
ε

( β/3 )2
sinf (58)

4 Discussion

We finish this paper by discussing how these

equations and their solution can be used in developing

mission designs to small asteroids or that keep a far

distance to the central asteroid. The most significant

aspect to consider is the existence of the sunward

equilibrium point, which serves as a natural vantage

point for observation. In these linear equations the

equilibrium point is technically unstable, as a small

random error will excite the drift term and cause the

spacecraft to drift away from the body at a linear

increase in time. This instability is not exponential, and

thus it can be easily nulled through the execution of

control maneuvers. The influence of the asteroid

gravitational attraction is seen to only cause an

oscillation in its location and, in some sense, stabilizes

the motion. Note that the full stability of these equilibria

are considered in [2]. It is also significant to note that the

location of this equilibrium point can be controlled by

the addition of a small amount of thrusting. If a constant

thrust is added towards the sun, the effect of the SRP is

reduced and the equilibrium point will move towards the

asteroid. Conversely, thrusting away from the sun will

push the equilibrium further from the asteroid and

towards the sun. As the level of thrusting is less than the

effect of SRP on the spacecraft, we see that by definition

this is a modest thrust.

In addition to the stationary equilibrium orbits, it is

also possible to utilize the time-varying periodic

solutions. These will naturally provide a range of

viewing geometries, and can also be excited in the out of

plane direction. These orbits can be chosen such that

they always remain on the sunward side, or if a larger

amplitude is used can also cross the asteroid radius and

pass behind the asteroid. A drawback for these orbits is

their long period, an asteroid year. Thus, they may only

be of interest for long-term monitoring or a mission with

no significant time constraints. Again, it is possible to

modify the characteristics of these orbits through the

addition of a small value of thrust towards or away from

the sun.

The current discussion does not consider the first

order perturbations to these solutions except in the most

trivial case. A future topic of interest would be what the

effect of the asteroid gravity is, at first order, when the

spacecraft is parked at a distance away from the sun-

asteroid line or when it is placed into a periodic orbit.

These cases can all be considered rigorously as the

general solution to the equations is known, and the first

order perturbations can be evaluated through a simple

quadrature.

5 Conclusion

This paper considers the orbital dynamics and

design of trajectories about very small asteroids or

distant from larger asteroids. In these cases the motion is

dominated by the heliocentric asteroid orbit, and motion

occurs on a timescale of one asteroid year. Despite this

drawback, there may be specific applications that may

be attractive in these situations, and which this analysis

may help develop. The paper provides a summary of the

equations governing spacecraft motion in this case and

reviews the basic solution procedures for these equations.
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小行星远距离抵近轨道

丹尼尔 J.谢尔斯
（科罗拉多大学 博尔德分校 史密德航天工程科学系，博尔德 80309-0429， 美国）

摘 要：讨论了小行星引力一阶项可被忽略情况下的小行星远距离轨道设计及动力学。此时，航天器的运动受太

阳引力和太阳光压的影响。航天器和小行星的加速度之差在这两者之间形成的独特的相对动力学，为航天器在小行星

附近停驻与观测提供特定轨道。完整解决了小行星处于圆形日心轨道这一较简单情况，也考虑和阐述了椭圆轨道情况，

并取得了一些初步结果。

关键词：小行星；抵近轨道；运动方程；高阶校正
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The Development Overview of Asteroid Exploration

ZHANG Rongqiao1，HUANG Jiangchuan2，HE Rongwei2，GEN Yan1，MENG Linzhi3

（1. Lunar Exploration and Aerospace Engineering Center， Beijing 100190；

2. China Academy of Space Technology， Beijing 100094；

3. Beijing Institute of Spacecraft System Engineering， Beijing 100094）

Abstract：：The small bodies retain the original elements of early solar system，and may contain important clues to the origin of

the earth's life and water. They are living fossils for studying the origin and evolutionary history of the solar system. Asteroid

exploration has become research hotspots of international deep space exploration in recent years. The process of small bodies

exploration is briefly summarized， and the research and development of asteroid exploration is reviewed， as well the key

technologies of asteroid missions. Based on the deep space exploration capability of China， some suggestions are put forward to

carry out future asteroid exploration.

Keywords：：asteroid exploration；key technology；development overview

Highlights：：

● The small bodies retain the original elements of early solar system，and they are living fossils for studying the origin and

evolutionary history of the solar system.

● Asteroid exploration has become research hotspots of international deep space exploration in recent years.

● The research and development status of asteroid exploration is summarized and reviewed.

● The key technologies of asteroid exploration missions are analyzed.
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