中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校百佳科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁屏蔽霍尔推力器技术的发展与展望

徐亚男,康小录,余水淋

downloadPDF
徐亚男, 康小录, 余水淋. 磁屏蔽霍尔推力器技术的发展与展望[J]. 深空探测学报(中英文), 2018, 5(4): 354-360. doi: 10.15982/j.issn.2095-7777.2018.04.005
引用本文: 徐亚男, 康小录, 余水淋. 磁屏蔽霍尔推力器技术的发展与展望[J]. 深空探测学报(中英文), 2018, 5(4): 354-360.doi:10.15982/j.issn.2095-7777.2018.04.005
XU Yanan, KANG Xiaolu, YU Shuilin. Development and Prospect of Magnetically Shielded Hall Thruster[J]. Journal of Deep Space Exploration, 2018, 5(4): 354-360. doi: 10.15982/j.issn.2095-7777.2018.04.005
Citation: XU Yanan, KANG Xiaolu, YU Shuilin. Development and Prospect of Magnetically Shielded Hall Thruster[J].Journal of Deep Space Exploration, 2018, 5(4): 354-360.doi:10.15982/j.issn.2095-7777.2018.04.005

磁屏蔽霍尔推力器技术的发展与展望

doi:10.15982/j.issn.2095-7777.2018.04.005

Development and Prospect of Magnetically Shielded Hall Thruster

  • 摘要:磁屏蔽霍尔推力器技术是近年来霍尔推进领域最具影响的创新突破,对于拓展霍尔推力器的应用范围,提高推力器的寿命具有重要意义。介绍了磁屏蔽霍尔推力器的原理及优缺点,从磁屏蔽的提出与验证、不同功率量级霍尔推力器的磁屏蔽技术以及磁屏蔽霍尔推力器热设计、背景压力敏感性、振荡模式转换等方面介绍了磁屏蔽的研究现状,并对未来磁屏蔽霍尔推力器技术的发展进行了展望。
  • [1] 康小录,杭观荣,朱智春. 霍尔推进技术的发展与应用[J]. 火箭推进,2017,43(1):8-17. KANG X L,HANG G R,ZHU Z C. Development and application of Hall el ctric propulsion technology[J]. Journal of Rocket Propulsion,2017,43(1):8-17.
    [2] ROY S,PANDEY B P. Plasma wall interaction inside a Hall thruster[J]. Journal of Plasma Physics,2002,68(4):305-319
    [3] MORZOVA,SAVELYEV V. Fundamentals of stationary plasma thruster theory[J].Reviews of Plasma Physics,2000,21:203-391.
    [4] MIKELLIDES I,KATZ I,HOFER R. Design of a laboratory Hall thruster with magnetically shielded channel walls,phase I:numerical simulations[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.[S. l.]:AIAA,2013.
    [5] MIKELLIDES I,KATZ I,HOFER R,et al. Design of a laboratory Hall thrusterwithmagnetically shielded channel walls,phase Ⅲ:comparison of theory with experiment[C]//Aiaa/asme/sae/asee Joint Propulsion Conference & Exhibit.[S. l.]:AIAA,2012.
    [6] MIKELLIDES I,KATZ I,HOFER R. Design of a laboratory Hall thruster with magnetically shielded channel walls,phase Ⅱ:experiments[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.[S. l.]:AIAA,2012.
    [7] HOFER R R,KAMHAWI H. Development status of the 12.5 kW HERMeS Hall thruster for the solar electric propulsion technology demonstration mission[C]//AIAA/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2015.
    [8] HUANG W S,WILLIAMS G J. Plasma plume characterization of the HERMeS during a 1722-hr wear test campaign[C]//.International Electric Propulsion Conference. Atlanta Georgia USA:Georgia Institute of Technology,2017.
    [9] GILLAND J H,PETERSON P Y. Trends of the HERMeSThruster as a function of throttlepoint[C]//International Electric Propulsion Conference. Atlanta Georgia USA,Georgia Institute of Technology,2017.
    [10] ORTEGA A L,MIKELLIDES I G. Numerical simulations for the assessment of erosion in the 12.5-kW Hall effect rocket with magnetic shielding (HERMeS)[C]//International Electric Propulsion Conference. Atlanta Georgia USA,Georgia Institute of Technology,2017.
    [11] POLK J E,ROBERT L. Front pole cover erosion in the 12.5 kW HERMeS Hall thrusterover a range of operating conditions[C]//International Electric Propulsion Conference. Atlanta Georgia USA:Georgia Institute of Technology,2017.
    [12] JORNS B A,DODSON C. Mechanisms for pole piece erosion in a 6-kW magnetically-shielded Hall thruster[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2016.
    [13] MIKELLIDES I G,HOFER R. The effectiveness of magnetic shielding in high-isp Hall thrusters[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2013.
    [14] HOFER R R,Cusson S E. The H9 magnetically shielded Hall thruster[C]//International Electric Propulsion Conference. Atlanta Georgia USA:Georgia Institute of Technology,2017.
    [15] GIANNETTI V,PIRAGINO A. Development of a 5 KW low-erosion Hall effectthruster[C]//International Electric Propulsion Conference. Atlanta Georgia USA:Georgia Institute of Technology,2017.
    [16] CONVERSANO R W,DAN M G,HOFER R R,et al. Development and initial testing of a magnetically shielded miniature Hall thruster[J]. IEEE Transactions on Plasma Science,2015,43(1):103-117
    [17] CONVERSANO R,HOFER R,MIKELLIDES I,et al. Magnetically shielded miniature Hall thruster:design improvement and performance analysis[C]//International Electric Propulsion Conference. Hyogo-Kobe Japan:Japan Aerospace Exploration Agency,2015.
    [18] CONVERSANO R W,DAN M G,HOFER R R,et al. Performance analysis of a low-power magnetically shielded Hall thruster:experiments[J]. Journal of Propulsion & Power,2017,33(4):975-983
    [19] CONVERSANO R W,DAN M G,MIKELLIDES I G,et al. Performance analysis of a low-power magnetically shielded Hall thruster:computational modeling[J]. Journal of Propulsion & Power,2017,33(4):992-1001
    [20] AIAA. Magnetically shielded miniature hall thruster:performance assessment and status update[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2000.
    [21] DUCCI C,MISURI T. Magnetically shielded HT100 experimental campaign[C]//International Electric Propulsion Conference. Atlanta Georgia USA,Georgia Institute of Technology,2017.
    [22] LOU G,VAUDOLON J,MAZOUFFRE S,et al. Design and characterization of a 200W Hall thruster in "magnetic shielding" configuration[C]//AIAA/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2016.
    [23] KATZ I,MIKELLIDES I G,HOFER R R,et al. Channel wall plasma thermal loads in Hall thrusters with magnetic shielding[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.[S. l.]:AIAA, 2011.
    [24] SEKERAK M J,LONGMIER B W,GALLIMORE A D. Mode transitions in magnetically shielded Hall effect thrusters[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2014.
    [25] HOFER R,ANDERSON J. Finite pressure effects in magnetically shielded Hall thrusters[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference.[S. l.]:AIAA,2014.
  • [1] 李硕, 余萌, 曹涛, 郑博, 胡涛.基于路标重观测的月面巡视器激光雷达定位方法研究. 深空探测学报(中英文), 2022, 9(6): 625-632.doi:10.15982/j.issn.2096-9287.2022.20220090
    [2] 宋征宇, 黄兵, 汪小卫, 张宏剑.重复使用运载器回收技术现状与挑战. 深空探测学报(中英文), 2022, 9(5): 457-469.doi:10.15982/j.issn.2096-9287.2022.20220021
    [3] 郭华东, 丁翼星, 刘广.月基对地观测研究现状与展望. 深空探测学报(中英文), 2022, 9(0): 1-11.
    [4] 徐青, 耿迅.地外天体形貌测绘研究现状与展望. 深空探测学报(中英文), 2022, 9(3): 300-310.doi:10.15982/j.issn.2096-9287.2022.20210162
    [5] 郭华东, 丁翼星, 刘广.月基对地观测研究现状与展望. 深空探测学报(中英文), 2022, 9(3): 250-260.doi:10.15982/j.issn.2096-9287.2022.20210080
    [6] 于登云, 邱家稳, 向艳超.深空极端热环境下热控材料研究现状与发展趋势. 深空探测学报(中英文), 2021, 8(5): 447-453.doi:10.15982/j.issn.2096-9287.2021.20210042
    [7] 于天一, 费江涛, 李立春, 程肖.月面巡视器路径规划方法研究. 深空探测学报(中英文), 2019, 6(4): 384-390.doi:10.15982/j.issn.2095-7777.2019.04.011
    [8] 任德鹏, 李青, 彭松.月面探测器燃料电池应用的初步研究. 深空探测学报(中英文), 2017, 4(6): 552-556.doi:10.15982/j.issn.2095-7777.2017.12.008
    [9] 程笑岩, 刘向阳, 黄启陶, 武志文, 谢侃, 王宁飞.舌形张角型脉冲等离子体推力器极板结构参数影响仿真研究. 深空探测学报(中英文), 2017, 4(3): 225-231.doi:10.15982/j.issn.2095-7777.2017.03.004
    [10] 王彦龙, 杨浩, 李兴达, 江豪成, 张天平.5 kW环型离子推力器试验研究. 深空探测学报(中英文), 2017, 4(3): 232-237.doi:10.15982/j.issn.2095-7777.2017.03.005
    [11] 耿金越, 熊子昌, 龙军, 沈岩, 刘旭辉, 陈君.微阴极电弧推力器研究进展. 深空探测学报(中英文), 2017, 4(3): 212-218,231.doi:10.15982/j.issn.2095-7777.2017.03.002
    [12] 朱安文, 刘飞标, 杜辉, 马世俊.核动力深空探测器现状及发展研究. 深空探测学报(中英文), 2017, 4(5): 405-416.doi:10.15982/j.issn.2095-7777.2017.05.002
    [13] 杜建华, 赵兰, 王立伟, 王彬磊, 周世安, 王均, 马皓.1.5 kW级磁聚焦霍尔推力器阳极电源设计. 深空探测学报(中英文), 2017, 4(3): 258-263.doi:10.15982/j.issn.2095-7777.2017.03.009
    [14] 熊森, 程谋森, 王墨戈, 杭观荣, 康小录.同心嵌套式霍尔推力器参数设计方法研究. 深空探测学报(中英文), 2017, 4(3): 238-244.doi:10.15982/j.issn.2095-7777.2017.03.006
    [15] 赖小明, 白书欣, 赵曾, 庞勇, 殷参.模拟月面环境钻进过程热特性研究. 深空探测学报(中英文), 2016, 3(2): 162-167.doi:10.15982/j.issn.2095-7777.2016.02.011
    [16] 于正湜, 崔平远.行星着陆自主导航与制导控制研究现状与趋势. 深空探测学报(中英文), 2016, 3(4): 345-355.doi:10.15982/j.issn.2095-7777.2016.04.006
    [17] 马鹏斌, 宝音贺西.近地小行星威胁与防御研究现状. 深空探测学报(中英文), 2016, 3(1): 10-17.doi:10.15982/j.issn.2095-7777.2016.01.002
    [18] 王伟, 马彦涵, 周易倩, 方宝东.深空探测磁动力技术研究进展. 深空探测学报(中英文), 2015, 2(3): 203-207.doi:10.15982/j.issn.2095-7777.2015.03.002
    [19] 郑茂繁, 耿海, 梁凯, 唐福俊, 黄永杰, 柯于俊.用于小行星探测的离子推力器技术研究. 深空探测学报(中英文), 2015, 2(3): 236-240.doi:10.15982/j.issn.2095-7777.2015.03.008
    [20] MikhailVasilyevichVASILYEV, EleonoraIvanovnaYAGUDINA.俄罗斯应用天文研究所月球历表研究现状. 深空探测学报(中英文), 2014, 1(3): 187-191.doi:10.15982/j.issn.2095-7777.2014.03.004
  • 加载中
计量
  • 文章访问数:1578
  • HTML全文浏览量:72
  • PDF下载量:864
  • 被引次数:0
出版历程
  • 收稿日期:2018-02-01
  • 修回日期:2018-05-28
  • 刊出日期:2018-08-01

磁屏蔽霍尔推力器技术的发展与展望

doi:10.15982/j.issn.2095-7777.2018.04.005

摘要:磁屏蔽霍尔推力器技术是近年来霍尔推进领域最具影响的创新突破,对于拓展霍尔推力器的应用范围,提高推力器的寿命具有重要意义。介绍了磁屏蔽霍尔推力器的原理及优缺点,从磁屏蔽的提出与验证、不同功率量级霍尔推力器的磁屏蔽技术以及磁屏蔽霍尔推力器热设计、背景压力敏感性、振荡模式转换等方面介绍了磁屏蔽的研究现状,并对未来磁屏蔽霍尔推力器技术的发展进行了展望。

English Abstract

徐亚男, 康小录, 余水淋. 磁屏蔽霍尔推力器技术的发展与展望[J]. 深空探测学报(中英文), 2018, 5(4): 354-360. doi: 10.15982/j.issn.2095-7777.2018.04.005
引用本文: 徐亚男, 康小录, 余水淋. 磁屏蔽霍尔推力器技术的发展与展望[J]. 深空探测学报(中英文), 2018, 5(4): 354-360.doi:10.15982/j.issn.2095-7777.2018.04.005
XU Yanan, KANG Xiaolu, YU Shuilin. Development and Prospect of Magnetically Shielded Hall Thruster[J]. Journal of Deep Space Exploration, 2018, 5(4): 354-360. doi: 10.15982/j.issn.2095-7777.2018.04.005
Citation: XU Yanan, KANG Xiaolu, YU Shuilin. Development and Prospect of Magnetically Shielded Hall Thruster[J].Journal of Deep Space Exploration, 2018, 5(4): 354-360.doi:10.15982/j.issn.2095-7777.2018.04.005
参考文献 (25)

目录

    /

      返回文章
      返回
        Baidu
        map