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Abstract This paper mainly solves the problem of 2D
minimally persistent formation control in which three co
leaders are in a cycle, which raises a great challenge in the
area of persistent formation control. First, a novel control
law is proposed for this problem. The fundamental moving
principles of the agents are well designed based on the
property of persistence, and the non square rigidity matrix
is converted into the square one for the design of the
control law. Then, the method of leading principal minor is
utilized to prove that the formation with the above control
law can be stabilized. Finally, simulation results show that
the proposed controllers are able to stabilize the group
formation to a rigid shape, while keeping the distances
between the agents to the desired value.

Keywords Three co leader, Minimally Persistent Formation,
RigidityMatrix

1. Introduction

In recent years, many research papers [1 10] have
indicated different ways of solving the problem of

fulfilling tasks using a formation. This paper however
proposes a minimally persistent formation controller to
maintain the distance of the agents continuously based on
the concept of rigid control [11, 12]. Furthermore,
different from the previous work, what we are dealing
with is formation control based on a directed graph,
rather than undirected. This type of the rigid formation
has been termed as the persistent formation [13 23].

The underlying graph of the directed formations may be
either cyclic or acyclic. Formation control with an acyclic
graph is easy dealt with because of its particular structure,
where the follower agents cannot influence the leader
agents. However, formation control with a cyclic graph has
well known difficulties, since the control of the leader agents
may be affected by the follower [18]. In the area of distance
maintenance control with a cyclic graph, some authors have
made some contributions [15, 23 25]. Baillieul [19] proposed
a method of formation control considering the distance
measurements in a cyclic structure, but he did not research
how to maintain the distance of all the agents. Hendrix [15]
then discussed the possibility of keeping the distance
between every pair of agents constant in a cycle graph and
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raised the concept of minimally persistent formation, but the
specific control of the whole formation was not analysed.
Furthermore, Yu [17] researched the special control law in a
minimally persistent formation with a leader first follower
variety in the plane and tried to design the control law using
a rigidity matrix. However, he only considered the one
leader situation in which the followers are in a cycle.
Moreover, in the research of leaders in a cycle, Anderson [25]
considered a control law for a formation with only three
agents named three co leaders, but he did not explain the
topology relationship of the followers.

To the best of our knowledge, all the aforementioned
papers share the following common drawbacks: one
leader model for minimally persistent formation cannot
complete the complex mission very soon and it is
difficult for one leader to find out the goal in a
complicated environment as soon as possible.
Consequently, the one leader model is an important
factor limiting the performance of the whole formation. In
addition, all the algorithms based on the one leader
model seem to have poor scalability and lack adaptability
and flexibility to both tasks and environment.

To overcome the aforementioned drawbacks, a multi
leader architecture is necessary. Yu [17] mentioned
that only the minimally persistent formation systems
with three leaders can be stabilized. Therefore, the
problem of minimally persistent formation control
with three co leaders is discussed in this paper. In the
three co leader model, the three co leaders are
equivalent. In addition, the non square rigidity matrix,
which indicates the distance of all the agents, is
introduced in the design of the control law to deal with
the timeliness problem.

The primary contribution of this paper is the proposing
of a novel control law using a non square rigidity matrix
for minimally persistent formations, in particular, under
the condition that the three co leaders are in the cycle.
Firstly, since the leaders and followers have different
types of the moving principle, we devise different
control laws for them respectively. Secondly, during the
course of designing the control laws, the novel method
of converting the non square rigidity matrix into the
square one is discussed in detail. Thirdly, it is necessary
to consider the situation where the followers are in a
cycle and when they are not. Finally, we do the
simulations in which the followers are in the acyclic and
cyclic graphs to prove the efficiency of the proposed
control law.

2. Preliminaries

2.1 Graph rigidity

Before introducing persistent formations in a directed
graph, it is necessary to know the underlying rigid

formations in an undirected graph. Let ( , )G V E be an
undirected graph with n vertices; denote the composite
vector and a pair ( , )G p .

{1,2, , } )ip i n represents the coordination of the ith
vertex in the place.

Denote the constant parameter || ||ij i jd p p as the
Euclidean distances between pairs of points ( , )i jp p . In
addition, the introduction of the rigidity matrix in [11]
claims that:

2( ) , ( ) , {1,2, , }i j i j ijp p p p d i j n (1)

Assume that the trajectory is smooth, then we could get
the following expressions from (1):

2 ( ) ,( ) 0,

, {1,2, , }, 0

i j i jp p p p

i j n t

(2)

where ip is the velocity at point ip . Then, we obtain the
following homogeneous equation by combining (2) at
different points:

0Rp (3)

where and R is called the
rigidity matrix with dimension 2m n [ ( 1) / 2 ]m n n
in the plane.

In addition, the rigidity function is described as follows
for another definition of rigidity matrix:

1 1 2 2

2 2 2( ) [|| || ,|| || , || || ]
m m

in out in out in out T
e e e e e eGg p p p p p p p (4)

where the ith component 2|| ||
k k

in out
e ep p corresponds to

the edge ke of E ( {1,2, , }k m ).

[12, 26, 27] A framework ( , )G p is
infinitesimally rigid in the plane if dim(ker ( )) 3

Gg
J p , or if

rank ( ) 2 3
Gg
J p n (6)

where ( )
Gg
J p is the Jacobian matrix of ( )Gg p and ( )

Gg
J p

has the same form as the rigidity matrix R.

[12] Point p is a regular point of graph G
with n vertices if

2rank ( ) max{rank ( )| }
G G

n

g g
J p J q q R (7)

[26, 27] A framework ( , )G p is infinitesimally
rigid if and only if ( , )G p is rigid and p is a regular point.
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(a) A rigid and infinitesimally rigid graph

(b) A rigid but not infinitesimally rigid graph

Two possible examples with a rigid framework

Lemma 2.1 tells us that some frameworks are rigid but
not infinitesimally rigid. However, if the framework is
infinitesimally rigid, then it is sure to be rigid. Fig. 1
illustrates these properties with two examples. It is easy
to compute that in Fig. 1 (a) and

in Fig. 1 (b), so Fig. 1 (a) is rigid and
infinitesimally rigid; Fig. 1 (b) is rigid but not
infinitesimally rigid as p is not a regular point. In general,
the rigid graphs which fail to be infinitesimally rigid
almost have parallel or collinear edges. In this paper,
“rigid” almost always means “infinitesimally rigid”.

[28] Consider a formation F in , with agents
in generic positions and with defined agent pairs having
the inter agent distances maintained. Let be
the undirected graph. Then F is rigid if and only if there is
a subset satisfying the following two conditions:

1.
2. For all

, where is the number of
vertices which are the end vertices of the edges in .

2.2 Persistent and minimally persistent graph

Rigidity is the property of the undirected graph, and
persistence is the corresponding property of the directed
graph.

[15] A representation is persistent if and only
if it is rigid and constraint consistent. A graph is
generically persistent if and only if it is generically rigid
and generically constraint consistent.

From Lemma 2.3, we know that rigidity and constraint
consistence are the crucial factors for the persistence of a
directed graph. However, in the plane, the rigidity of a
directed graph is actually the rigidity of the
corresponding underlying undirected graph, and the
constraint consistence means that every agent should
satisfy all their own distance constraints.

(a) (b)

Example of a persistent and not persistent graph, (a) A
graph is rigid and persistent; (b) A graph is rigid but not
persistent

As a result, the graph in Fig.2 (a) is persistent and the
graph in Fig.2 (b) is not persistent as node 2 is not
constraint consistent (one node is able to satisfy two
distance constraints at most in the plane). The arrows in
the figures indicate the “leading” relationship, instead of
the direction of the information flow which is commonly
used in graph persistent theory [14]. As a result, the
arrows indicating node 4 in Fig.2 (a) mean that node 4 is
the “leader” of node 1, 2 and 3; node 1, 2 and 3 can only
know the information of node 4.

The minimal rigid graph requires that the graph has the
least edges to satisfy the rigid conditions, and if one edge
is removed, the graph will not be rigid. A comparative
relationship between the rigidity and persistence is that
the conditions of the minimally persistent graph are more
complicated than that of the rigidity graph.

[15] Consider a directed graph with more
than one vertex. Then it is minimally persistent if and
only if the underlying undirected graph is minimally
rigid and no vertex has more than two outgoing edges.

Lemma 2.3 and Lemma 2.4 tell us that the number of the
vertices in a minimally persistent graph is always 2n 3 (n
represents the number of nodes).

3. Formation control laws

An example of minimally persistent formation with three
co leaders is shown in Fig 3 in which agent 4, 5 and 6 are
the leaders in a cycle and each of them has one Degree of
Freedom (DF). The DF of any of the followers 1, 2 and 3 is
zero. All the followers are directly or indirectly controlled
by the leaders to fulfil the distance constraint, i.e., the
motion of agent 1 is constrained by agents 4 and 6; while
the motion of agent 2 is constrained by agent 4 and agent 1.

A graph with a minimally persistent formation with
three co leaders.
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In this paper, the first order kinematic model is adopted
for every agent:

i iu p (8)

3.1 Control laws for followers

For n agents, the index of all the followers is defined from
1 to n 3. When one agent has to maintain the constant
distance ( and ) from two leader neighbours (
and ), it has two choices (shown in Fig. 4). Agent
may choose or as its targeted position since both
of them have the same distance ( and ) to
and . However, the position is more feasible than

due to a short moving distance. Therefore, is
chosen as the target position to be reached for the
follower agent . All the followers in this paper are
guided by such a principle.

Moving principle of the followers.

From (8), we can design the control law:

_

_ _

( )
( , , , )

i i i i o i

i j i k i ij o ik o

u p K p p
K f p p p p d d

(9)

where iK is the gain here.

Suppose that the position of agent ip can be expressed as
( ) ( )i iip t p p t , where ip ( ( , )ii ip x y ) is the desired

position which satisfies the dynamic constraint on the
distance for the ith agent, and ( )ip t means a small
variable. From Fig.4, by using the cosine law to the
triangle _i j i op p p and neglecting the non linear second
order terms, a linear equation can be obtained as follows:

2 2
_ _2 ( )

T
j i i o i ij ij oj ix x y y p p d d (10)

where ijd represents the distance between ip and jp , and

_ij od means the distance between ip and _i op .

1 2 2
_

_ 2 2
_

1
2

j i ij ij oj i
i o i

k i ik ik ok i

d dx x y y
p p

d dx x y y

Then,

1 2 2[ ]_2

T T
d d p p p p p pij ij o i ji j i j

1 2 2[ ]_2
T T

d d p p p p p pij ij o i ki k i k

As a result, the control law of the followers is represented
by:

1

( , )

i

i

jj i j ii
i ij ik

jk i k ii
k

k

x
y
xy yx x x

K R
yx x y yy
x
y

(11)

( , )
i j i ji j i j

ij ik
i k i k

i k i k

x x y y x x y y
R

x x y y

x x x x

(12)

where ( , )ij ikR is the sub matrix of the rigidity matrix R.
(Please see [17] for more details).

So, for all the followers, the control law can be obtained
as follows:

1( ) ( )ep t KR R p t (13)

= j i j i
e

k i k i

y yx x
R

x x y y

where both K and eR are 2 2 diagonal block matrices.

eR partly represents the rigidity of the formation.

3.2 Control laws for co leaders

There are three co leaders indexed by n 2, n 1, and n, and
they lead each other. The minimally persistent formation
controllers for three co leaders are proposed as:

1 2 ( 2, 1)_
2 2 1 2

1 2

|| ||
( )

|| ||
n n n n o

n n n n
n n

p p d
p k p p

p p

1 ( 1, )_
1 1 1

1

|| ||
( )

|| ||
n n n n o

n n n n
n n

p p d
p k p p

p p

2 ( , 2)_
2

2

|| ||
( )

|| ||
n n n n o

n n n n
n n

p p d
p k p p

p p
(14)

where nk , 1nk and 2nk are the gains.

Then
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2

12 2
2 2 _ 2 (( 2)( 1),00)

1
2

1

n

n n
n e n n n

n
n

n

x
x y

k I R R
x

y
y

(15)

where

2 1 2 1
(( 2)( 1),00)

1 2 1 2

0 0

0 0

n n n n
n n

n n n n

x x y yR

x x y y
(16)

_ 2e nR is the sub matrix of eR corresponding to node n
2. Refer to (10), the _ 2e nR becomes:

1 2 1 2
_ 2

1 21 2( )

n n n n
e n

n nn n

x x y y
R

y y x x
(17)

Each row of _ 2e nR is derived based on (10). As a result,
the control law for 2np is:

1
2 2 2 _ 2 (( 2)( 1),00) 2( ) ( )n n e n n n np t k I R R p t (18)

Similarly, we get:

1
1 1 2 _ 1 (( 1) ,00) 1( ) ( )n n e n n n np t k I R R p t (19)

where

1 1
(( 1) ,00)

1 1

0 0

0 0

n n n n
n n

n n n n

x x y yR

x x y y

1 1
_ 1

11( )

n n n n
e n

n nn n

x x y y
R

y y x x

and

1
2 _ ( ( 2),00)( ) ( )n n e n n n np t k I R R p t (20)

2 2
( ( 2),00)

2 2

0 0

0 0

n n n n
n n

n n n n

x x y yR

x x y y

2 2
_

22( )

n n n n
e n

n nn n

x x y y
R

y y x x

3.3 Control laws for the whole formation

Without loss of generality, any 2D linear motion can be
equivalent to a two step motion consisting of translation
along the x axis and y axis. To simplify the analysis
process, a two step translation along the x axis and y
axis are used to substitute the linear motion in this
paper.

For the first step of the translation along the x axis, the
leader who firstly discovers the goal is defined as node
n. In order to realize the x axis translation, let the
values of ,n ny x , 1ny and 2ny all be zero, hence
the values of 2 1n ny y , 1n ny y and 2n ny y are
also zero.

So we get that:

2 2 2 1

2

( )
0

n n n n

n

x k x x

y
(21)

1 1 1

1

( )
0

n n n n

n

x k x x

y
(22)

0n

n

x

y
(23)

Likewise, for the second step of the translation along the
y axis, we arrive at the following conclusion:

2

2 2 1
2

0
( )

n

n n n
n

x
k y y

y
(24)

1

1 1 2
1

0
( )

n

n n n
n

x
k y y

y
(25)

0n

n

x

y
(26)

Since the translation along the x axis and y axis is
equivalent, we can only discuss the case of translation
along the x axis here.

With (11), (21), (22) and (23), we obtain a new control law:
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1 1

1 1

2 2
1

2 2

2 2

1 1

e

n n

n n

x x

y y

x x

x KR R y

x x

x x

(27)

where
3

2 11
( )
n

i n ni
K K k k

The number of the rest control variable is only (2n 4)
since ,n ny x , 1ny and 2ny are all zero, so both eR
and R are (2 4) (2 4)n n . As R is originally
(2 3) 2n n , (2n 4), (2n 2), (2n 1), 2n columns and the
(2n 2) row will be removed from R to get R because they
are corresponding to the zero value of ,n ny x , 1ny
and 2ny . Based on the same reason, eR is derived by
removing (2n 4), (2n 2), (2n 1) and 2n columns from eR .

Then the set of all the follower nodes is denoted by V
and a subset of the follower node set is fV , fV V .

2 1 1 2

2 2

( )

0 0

0
n n n n

n n n n

R V X

R x x x x

x x x x

(28)

3

1 2 11
( ) ( ) ( )
n

e i n n n ni
R D x x x x (29)

Here, we suppose that the two outgoing edges from node
i are { , }p pi j and { , }p pi k , so:

i j i j
i

i k i k

x x y y
D

x x y y (30)

4. Stability analysis

In section 3, we propose the formation control laws using
the minimally persistent directed graph. In this section
the stability of the control laws will be discussed.

The control laws will be expressed by:

1
ez KR Rz

Where
1

eKR can be expressed by ReK and ReK is a
diagonal block matrix. Then the above equation is easily
transformed into:

Rez K Rz (31)

For an n node minimally persistent
formation with the agent set 1 2, , , nP p p p at generic
positions, the three co leaders are indexed by n, n 1 and n
2. R is the matrix obtained by removing the (2n 4), (2n 2),
(2n 1) and 2n columns, and (2n 2) row, from the rigidity
matrix R . Then a diagonal block matrix ReK exists, such
that the formation control laws (31) with the minimally
persistent are stable.

Proof. In Theorem 3.2 in [17], we obtain the conclusion
that if every leading principal minor of is nonzero, then
a diagonal exists such that the real parts of the
eigenvalues of are all negative.

Following Lemma 4.3 and Theorem 4.5 in [17], we know
that both ( )R V and ( )fR V are generally non singular
( fV V ) with one leader formation.

Finally, for all 1 3k n , the outgoing edges from the
vertex k are the main factor of , so with the leading
principal minor of ( )fR V , there are three situations to be
considered here.

The leading principal minor of is denoted by
On account of the sequence appearing in

the leading principal minor, only the last appearing node
needs to be considered here. Suppose that the last
appearing node is , and its virtual leaders are

The edges from are{ } and { }.

If and , which means that the index of both
and are smaller than that of in the sequence of

the leading principal minor, then this leading principal
minor is| ( )|fR V . As analysed in [17], it is known that
( )fR V is non singular, so the determinant here is nonzero.

1. If or . For the case of
, when both of are the

followers, and as ( )fR V is non singular, so the
determinant is nonzero; when is the co leader,
from Lemma 4.3 and Theorem 4.5 in [17], it is known
that the determinant is also nonzero

2. If and , there are three situations that need
to be discussed.

When both of them are followers, then it is similar to step
(1); when one of them is the follower and the other is a co
leader, then it is similar to step (2); when both of them are
co leaders, then the leading principal minor is:

(1,2,3,..., 1)

=det

0

k mk k m

k n k m

R k X

D x x y y

x x y y
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where X is a don’t care vector and ,x y are the x axis
and y axis coordinates. So it is also nonzero.

To sum up, the leading principal minor of all the
followers is nonzero. Then the leading principal minor of
the co leaders is provided as follows:

Both of them can be transformed into the form as follows:

(1,2,3,..., 3)
=det

0

R n X
D

kx

where k is the real coefficient gain and x indicates the
real number, such as 1nx , 2nx and nx . As a result, they
are nonzero.

Therefore, the leading principal minor of R is nonzero.
From Theorem 3.2 in reference [17], we know that a
diagonal ReK exists such that the real parts of the
eigenvalues of (31) are all negative, holds.

5. Simulations

In this section, simulations using the control laws
designed in this paper are presented. Mobilesim software
is used to conduct the simulation platforms.

In the simulations, the topology of the mobile robot
system is the same as in Fig. 3, in which robots 4, 5 and 6
are defined as the leaders, and the others are the
followers.

(a) Time=0s (b) Time=4s

(c) Time=7s (d) Time=12s

Simulation snapshots for a three co leader minimally
persistent formation with followers in an acyclic graph.

As analysed in section 3.3, to simplify the analysis, the
simulations consist of two stages which are moving along
the x axis and then along the y axis. In addition, two
kinds of follower topology are studied, which are cyclic
and acyclic.

In Fig.5 (a), the topology of the leader set is cyclic
and the topology of the follower set is acyclic.

In the simulations, the gains applied in the controller are
defined as follows:

1 ( )
0e

L

S V XR R
S

where

0LS

Node , and their topology is acyclic, so based
on Theorem 5.2 in [17], we know that all the eigenvalues
corresponding to node are 1. So only the
eigenvalues corresponding to the leader needed to be
adjusted by K

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 1 0 0

K

2

1

0
0 0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

n

n

k
k

Snapshot (a) and (b) in Fig. 5 show that the formation is
moving with the following initial position:

Considering the property of
1

eR R , here we may choose

2 1 1n nk k . Fig.5 (c) depicts that the robots have
adjusted their orientation along the y axis. In Fig.5 (d), all
the robots finally arrive at the destination.

Then, another situation is considered where the topology
of the follower set is cyclic. The snapshots are
shown in Fig 6.
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(a) Time=0s (b) Time=4s

(c) Time=7s (d) Time=12s

Simulation snapshots for a three co leader minimally
persistent formation with followers in a cyclic graph.

The initial positions of the robots are defined as follows:

Both the leaders and followers are in a cycle, hence it is
more complex than the first situation.

From [17], we know that: if the topology of
is cyclic, define to be the trace of the cycle

weight. Then k eigenvalues of are at 1, and the
remaining are at: , where is
defined as:

13 35 35 13 32 24 24 32 21 14 14 21

13 14 14 13 32 35 35 32 21 24 24 21

( )( )( )
( )( )( )
x y x y x y x y x y x y
x y x y x y x y x y x y

For this designed persistent formation (k=3), the
eigenvalues for are

K is chosen as follows:

0 0 0 0 0 0

0 0 0 0 0 0

K

0 0 0 0 0

10.324 6 0 0 0 0

0 0 0 24.238 9 18.346 5 0 0

0 0 0 33.1212 19.098 2 0 0

0 0 0 0 0 0

0 0 0 0 0 0 1

The eigenvalues of
1

eKR R are:

So it can be proved that this situation is also stable.

6. Conclusions

This paper mainly dealt with the problem of minimally
persistent formation control with three co leaders, and the
minimally persistent formation control law for the case
where three co leaders are in the cycle was proposed. The
non square matrix, which mostly represents the
characteristic of the persistent formation, is successfully
utilized to design the control law. In the process of
designing the control laws, the straight line motion is
substituted by a two step translation motion along the x
axis and y axis, respectively. The method of leading
principal minor is adopted to prove that the system with
the designed law can be stabilized. The simulation results
demonstrate that whether or not the followers lie on a
cyclic graph, the designed control law is effective.
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