
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

April 2013, Vol. 56 048201:1–048201:10

doi: 10.1007/s11432-011-4458-6

c© Science China Press and Springer-Verlag Berlin Heidelberg 2011 info.scichina.com www.springerlink.com

Unsupervised robust recursive least-squares
algorithm for impulsive noise filtering

CHEN Jie1,2, MA Tao1,2∗, CHEN WenJie1,2 & PENG ZhiHong1,2

1School of Automation, Beijing Institute of Technology, Beijing 100081, China;
2Key Laboratory of Complex System Intelligent Control and Decision (Beijing Institute of Technology),

Ministry of Education, Beijing 100081, China

Received September 14, 2010; accepted May 27, 2011; published online December 2, 2011

Abstract A robust recursive least-squares (RLS) adaptive filter against impulsive noise is proposed for the

situation of an unknown desired signal. By minimizing a saturable nonlinear constrained unsupervised cost func-

tion instead of the conventional least-squares function, a possible impulse-corrupted signal is prevented from

entering the filter’s weight updating scheme. Moreover, a multi-step adaptive filter is devised to reconstruct the

observed “impulse-free” noisy sequence, and whenever impulsive noise is detected, the impulse contaminated

samples are replaced by predictive values. Based on simulation and experimental results, the proposed unsuper-

vised robust recursive least-square adaptive filter performs as well as conventional RLS filters in “impulse-free”

circumstances, and is effective in restricting large disturbances such as impulsive noise when the RLS and the

more recent unsupervised adaptive filter fails.
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1 Introduction

The need to extract signals and other components from a time series is paramount in communication,

control, and signal processing problems. An observed noisy sequence is often corrupted by noise that can

be divided into two parts: the background noise and impulsive noise. Conventional adaptive filters [1]

or robust filters [2,3] are either sensitive to impulsive noise or requiring prior knowledge of the desired

signal that, however, sometimes is unavailable.

Impulsive noise occurs relatively infrequently and is non-stationary, and these qualities render impos-

sible the prediction of the statistical properties of impulsive interference [4]. Rarely have models been

able to approximate the most important characteristics of impulsive noise [5]. Under adverse conditions,

impulsive events can spread over numerous data samples such that detection becomes difficult, and the

performance of linear adaptive filters can deteriorate significantly [6]. Nonlinear techniques are often

employed to reduce the adverse response from filters. The amplifier limiter is the simplest approach in

combating such noise. Nevertheless, these static amplifier limiters can result in poor performance if the

signal is non-stationary and changes rapidly [7].
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Median filtering is applied to the least-mean-squares (LMS) and recursive least-squares (RLS) algo-

rithms, which prevents the filter weights from being affected by the adverse effects of impulsive noise.

However, smearing of the original signal can occur [8]. Chan and Zou [4,9,10] proposed a recursive least

M-estimate (RLM) algorithm for impulsive noise suppression. Unfortunately, this RLM algorithm is

only suitable for system identification schemes in known desired signal conditions. Vega et al. [11–13]

introduced a new framework for designing robust adaptive filters by restricting the weight updating pro-

cess. Nevertheless, that framework also requires the desired signal and can only cope with time-invariant

system identification cases.

To pave the way for a study of cases where both system and desired signal are unknown, the unsuper-

vised adaptive filtering [14,15] seems to be useful. However, the probability distribution of the desired

signal is required. Universal filtering based on linear least-squares prediction [16], the online gradient de-

scent algorithm [17] and the minimum mean-squares-error (MMSE) [18,19] do not assume any stochastic

mechanism of the desired and observed signals. It only makes assumptions about the noise, i.e. the noise

is additive zero-mean, time-independent, bounded, and known variance. Nevertheless, these unsupervised

form adaptive filters are very sensitive to impulsive noise.

According to the unsupervised adaptive filtering framework in [18], an unsupervised robust recursive

least-squares (UR-RLS) filtering algorithm is proposed that renders large perturbations like impulsive

noise unresponsive. The UR-RLS is first an extension of the RLS algorithm that is applicable if the

desired signal is unavailable for scrutiny. A saturable nonlinear function is introduced to limit the

adverse effects of the possible impulsive noise on the RLS weight updating process of the finite impulse

response (FIR) filter. The UR-RLS also extends unsupervised adaptive filtering to cases when the input

signal is contaminated by possible impulsive noise, for then the impulse-corrupted samples are replaced

by predictive values generated from a multi-step adaptive predictor (MAP).

The paper is organized as follows: In Section 2, mathematical models for the impulsive environment

and the filtering framework are described. The detailed form of the UR-RLS filter is in Section 3. Section

4 is devoted to the derivation of the MAP. Section 5 presents the simulation and experimental results,

and concluding remarks are in Section 6.

2 Problem formulation and filter description

Consider the output of an additive channel

yt = xt + vt, t = 1, 2, . . . , (1)

where {yt}t�1 is the observed noisy signal, and {xt}t�1 denotes the real-valued clean (desired) signal to be

estimated. The additive noise vt could be divided into two parts: background noise bt and impulsive noise

nt. The background noise {bt}t�1 is assumed to be independent over t, and with a Gaussian distribution,

i.e. bt ∼ N(0, σ2
b ) for arbitrary t. Additionally, assume that |xt| � BX for some positive real number

BX <∞. Since {bt}t�1 is assumed Gaussian, for given positive real number BB = 3σ2
b , |bt| � BB exists

with probability of 99.74%. Thus, the noise vt can be expressed as vt = bt + nt.

The structure of the proposed UR-RLS filter as shown in Figure 1 is composed of three parts:

(a) a FIR filter: a linear transversal filter with order d.

(b) a weight updating algorithm: unsupervised weight updating scheme of the FIR filter.

(c) a predictor: estimate ŷt+k|t(k � 1) by using observed noisy sequence {yi}ti=1 and the estimated

{ŷt+i|t}k−1
i=1 .

Remark 2.1. Comparing the predictor’s output ŷt|t−1 with the observed yt, we take the following

algorithm:

ŷt =

{
yt, |yt − ŷt|t−1| � ξ,

ŷt|t−1, otherwise.
(2)

If |ŷt|t−1 − yt| is greater than a certain threshold ξ, then the input to the FIR filter yt will be replaced

by ŷt|t−1 to avoid possibly intrusion of the impulse. A MAP is developed in case the impulse lasts more
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Figure 1 Scheme of the UR-RLS filter.

than one sampling period. A fixed ξ results in a tradeoff between noise sensitivity and signal reliability.

If ξ is too small, the filter will behave well against impulsive noise, but those effective signals can also

be eliminated. If ξ is large, some impulses might get into the filter. Consequently, a time varying {ξt}
sequence depending on the confidence level of the predictor is used.

3 Unsupervised weight updating algorithm

Let wt = [wt, wt−1, . . . , wt−(d−1)]
T ∈ R

d, and yt = [yt, yt−1, . . . , yt−(d−1)]
T ∈ R

d be, respectively, the

tap-weight vector and tap-input vector at time t, where (·)T is the usual transposition operator. Zeros

are assigned to those elements of the vectors for which the indices are less than or equal to zero. In

addition, we have c = [σ2
b , 0, . . . , 0]

T ∈ R
d is the background noise vector, ‖ · ‖ denoting the Euclidean

norm for vectors, | · | the absolute value, and (·)∗ signifying the optimal value.

Definition 3.1. For any i, t � 1 and wt ∈ R
d, let li(wt) � (yi − wT

t yi)
2 + 2wT

t c. According to the

cost function of conventional RLS [1], define the cost function of a UR-RLS as

Lρ(wt) �
t∑

i=1

λt−iρ(li(wt)) + δλt‖wt‖2, (3)

where the forgetting factor λ is a positive constant close to, but less than, unity; δ is a positive real number

called the regularization parameter, and ρ(·) is a saturable nonlinear function. The term δλt‖wt‖2 is the

regularizing term which stabilizes the solution to the RLS problem by its smoothing effect.

Remark 3.2. The purpose of using a saturable nonlinear function ρ(·), instead of the one in [18], is to

limit the adverse effect of the impulsive noise on the weight updating algorithm.

Figure 2 depicts the following nonlinear function:

ρ(l) =

{
l, |l| < ζ,

sign(l)ζ, otherwise,
(4)

where ζ is the threshold parameter. A |l| value smaller than ζ reduces the cost function to that for the

universal FIR MMSE adaptive filtering (UAF) [18]. If |l| � ζ, ρ(·) is equal to a constant which helps

to suppress large perturbations. It can be seen that small value of ζ results in a good suppression of

impulses, but values of ζ too small would also restrict the use of those “impulse-free” l. Alternatively, as

for the analysis in Remark 2.1, filtering with large l does not behave well against the impact of impulses.

In this paper, the threshold parameter ζ is continuously chosen according to the lt sequence. This will

be discussed later in this section. From the above discussion, it is apparent that the objective function

Lρ(wt) defined in (3) can be used to smooth out the adverse effects of impulsive noise.

By minimizing the cost function Lρ(wt) in (3) with respect to wt, we get the following normal equation:

Φtw
∗
t = Pt, (5)
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Figure 2 Saturable nonlinear function.

where

Φt = δλtI +

t∑
i=1

λt−iψ(li)yiy
T
i = λΦt−1 + ψ(lt)yty

T
t , (6)

Pt =
t∑

i=1

λt−iψ(li)(yiyi − c) = λPt−1 + ψ(lt)(ytyt − c), (7)

in which ψ(l) � dρ(l)/dl. Applying the matrix inversion lemma [1], the following RLS estimate algorithm

is derived that solves the normal equation in (5):

Φ−1
t = λ−1(I −Kty

T
t )Φ

−1
t−1, (8)

Kt =
ψ(lt)Φ

−1
t−1yt

λ+ ψ(lt)yT
t Φ

−1
t−1yt

, (9)

w∗
t = Φ−1

t Pt = w∗
t−1 + ψ(lt)Φ

−1
t [(yt −w∗T

t−1yt)yt − c], (10)

where Kt is the gain vector. If |lt| < ζ, we see that ψ(lt) = 1, and eq. (10) becomes identical to the UAF,

if λ and δ are equal to one. However, when |lt| � ζ then ψ(lt) = 0, and from (6) and (7), the impulse

corrupted signal yt does not appear in the expressions for Φt and Pt. At the same time, updating the

weight vector is not possible. These properties make the proposed UR-RLS algorithm more robust in

the UAF. Choices of forgetting factor λ and regularization parameter δ are identical to the conventional

RLS algorithm [1]. For simplicity, λ is assumed to be 0.99, and δ is a large (small) positive constant for

low (high) signal-to-noise ratio (SNR) circumstances.

Remark 3.3. As mentioned in Remark 3.2, the choice of the threshold parameter ζ can significantly

affect the performance of the algorithm. Although the distribution of lt is in general unknown, the

threshold ζ in (4) can be chosen as

ζ = kζ σ̂lt , (11)

where kζ is the confidence factor, and σ̂lt is the estimated variance of “impulse-free” lt. According to

the experimental results, kζ can be chosen to be 3.0, which results in a 99% confidence in detecting and

rejecting the impulse. We take the following formula to estimate σ̂lt [8]:

σ̂2
lt = λσσ̂

2
lt−1

+ (1− λσ)c1med(Aρ(lt)), (12)

where Aρ(lt) = {ρ(lt), . . . , ρ(lt−Nl+1)}, med(·) denotes the sample median operation, Nl is the length of

the estimation window, λσ the forgetting factor, and c1 = 1.483(1+5/(Nl−1)) a finite sample correction

factor [20]. Also σ̂2
l0

is a relatively large value relevant to the bound of the observed “impulse-free”

noisy signal yt. According to our experimental results, σ̂2
l0

= 3(BX + BB) is big enough. Moreover, the

forgetting factor could be chosen as λσ = 0.99.
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4 Processing of input signal

In regard to the FIR filter outlined in Figure 1, the UR-RLS filter becomes

x̂t(y
t) = w∗T

t yt. (13)

It is not difficult to notice that although the weight updating algorithm of w∗
t in (10) is insensitive to

large perturbations, the impulse corrupted yt still degrades the performance of the filter. In the following

part, a MAP is developed to restrict the adverse effects from a possible impulsive noise when filtering

the input vector yt.

Definition 4.1. For any u ∈ R
d, define the cost function of k-step (k � 1) MAP at time t,

Ju(t, k) �
t−k∑
i=1

βt−k−i(yi+k − uT
t,kyi)

2 + αβt−k‖ut,k‖2, (14)

where ut,k denotes the weight vector of MAP, and as in Definition 3.1, 0 < α < ∞ and 0 < β � 1 are

the regularization parameter and the forgetting factor, respectively.

By minimizing the cost function Ju(t, k) with respect to ut,k, we have

Ψt,ku
∗
t,k = Qt,k, (15)

where

Ψt,k = αβt−kI +

t−k∑
i=1

βt−k−iyiy
T
i = βΨt,k−1 + yt−ky

T
t−k, (16)

Qt,k =
t−k∑
i=1

βt−k−iyi+kyi = βQt,k−1 + ytyt−k. (17)

Thus, from the matrix inverse lemma, the following RLS algorithm is derived by solving (15):

Ψ−1
t,k = β−1(I −Kt,ky

T
t−k)Ψ

−1
t,k−1, (18)

Kt,k =
β−1Ψ−1

t,k−1yt−k

1 + β−1yT
t−kΨ

−1
t,k−1yt−k

, (19)

u∗
t,k = Ψ−1

t,k Qt,k = u∗
t,k−1 + (yt − u∗T

t,k−1xt−k)Kt,k, (20)

where Kt,k is the gain vector. Consequently, the output of the k-step (k � 1) MAP is

ŷt+k|t = u∗T
t,kyt. (21)

Assume that the “impulse-free” time-series yt could be described by an autoregressive model with

order p (AR(p)):

yt = a1yt−1 + · · ·+ apyt−p + εt, (22)

where εt is independent of time, εt ∼ N(0, σ2
ε), and p � d. Denote a = [a1 · · ·ap 0 · · · 0]T ∈ R

d, then

yt = aTyt−1 + εt.

For any a ∈ R
d, define

Γ(a) =

[
0 0

Id−1 0

]
+

⎡
⎢⎢⎣

aT

0
...

⎤
⎥⎥⎦ ∈ R

d×d,

where Id−1 is the identity matrix. Therefore,

yt+k = aTyt+k−1 + εt+k = aT[Γ (a)]k−1yt + aT
k−2∑
i=0

[Γ (a)]i

⎡
⎢⎢⎣
εt+k−1−i

0
...

⎤
⎥⎥⎦

︸ ︷︷ ︸
�Ξk−2

+εt+k. (23)
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Theorem 4.2. Given the MAP in (21), then, the prediction error variance becomes

E[(yt+k − ŷt+k|t)T(yt+k − ŷt+k|t)]

= yT
t (a

T[Γ (a)]k−1 − u∗T
t,k)

T(aT[Γ (a)]k−1 − u∗T
t,k)yt

+ aT
k−2∑
i=0

[Γ (a)]i

⎡
⎢⎢⎣
σ2
ε 0 · · ·
0 0 · · ·
...

...
. . .

⎤
⎥⎥⎦ ([Γ (a)]i)Ta+ σ2

ε . (24)

Proof. Since εt is white noise with variance σ2
ε , the prediction error variance becomes

E[(yt+k − ŷt+k|t)T(yt+k − ŷt+k|t)]

= E[(aTyt+k−1 + εt+k − u∗T
t,kyt)

T(aTyt+k−1 + εt+k − u∗T
t,kyt)]

= E[(aT[Γ (a)]k−1yt + aTΞk−2 + εt+k − u∗T
t,kyt)

T · (aT[Γ (a)]k−1yt + aTΞk−2 + εt+k − u∗T
t,kyt)]

= E[yT
t (a

T[Γ (a)]k−1 − u∗T
t,k)

T(aT[Γ (a)]k−1 − u∗T
t,k)yt]

+ E[(aTΞk−2)
T(aTΞk−2)] + E[εTt+kεt+k]

= yT
t (a

T[Γ (a)]k−1 − u∗T
t,k)

T(aT[Γ (a)]k−1 − u∗T
t,k)yt

+ aT
k−2∑
i=0

[Γ (a)]i

⎡
⎢⎢⎣
σ2
ε 0 · · ·
0 0 · · ·
...

...
. . .

⎤
⎥⎥⎦ ([Γ (a)]i)Ta+ σ2

ε .

Remark 4.3. From Theorem 4.2, as the prediction length k increases, the error accumulates. Usually,

the a prior predictor (k = 1) is used to generate the comparison sequence with the observed samples.

The multi-step form of the predictor (k > 1) works only if the corrupted impulse lasts more than one

sampling period.

As mentioned in Remark 2.1, a time-varying ξt determines whether the observed signal is corrupted

by impulsive noise or not. Given ŷt|t−1 from the MAP, the “impulse-free” estimation error becomes

et = yt − ŷt|t−1. More precisely, the error signal is assumed, for simplicity, to be a Gaussian- distributed

random process. Suppose that the variance of et can be estimated, then, the probability Pr{|et| > ξ} =

θξ = 1− erfc{ξ/(√2σ̂2
ξt
)}, where erfc(r) = 2√

π

∫ r

0 e−x2

dx is the complementary error function [9], because

of the Gaussian assumption of et. By choosing different values of θξ, we have a different confidence in

detecting the impulsive noise that appears at the input signal. For example, if θξ is set to 0.01, we have

99% confidence to detect and reject the impulse. Therefore, the threshold ξ in (2) can be chosen as [10]

ξ = kξσ̂ξt = 2.576σ̂ξt , (25)

where kξ = 2.576, and σ̂ξt is the estimated variance of the “impulse-free” estimation error. To estimate

σ̂ξt , the following formula can be used

σ̂2
ξt = λξσ̂

2
ξt−1

+ (1− λξ)c1med(A(et)), (26)

where A(et) = {e2t , . . . , e2t−Ne+1}, Ne is the length of the estimation window, λξ is the forgetting factor,

and med(·) and c1 are the same as that in (12). Similar to λζ , the forgetting factor λξ could be chosen

as 0.99. Since the MAP could not get a good estimation of ŷt at the very beginning, the initial value of

σ̂ξ0 is set to be 3(BX +BB).

5 Simulation and experimental results

5.1 Linear, stochastic signal

Consider the AR(1) clean signal [18]:

xt = γxt−1 + zt, γ = 0.9, t = 1, 2, . . . , (27)
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where {zt}t�1 is independent and identically distributed (i.i.d.), zt ∼ N (0, 1), and x0 ∼ N (0, 1
1−γ2 )

to assure the stationarity of {xt}t�1. The noisy signal {yt}t�1 is obtained by passing the clean signal

through the additive channel (1), where the background noise {bt}t�1 is a Gaussian sequence, independent

of {xt}t�1. If σ2
x and σ2

b are the power of the clean signal and the background noise, respectively, then

the signal-to-background-noise ratio (SBNR) is defined as

SBNR = 10 lg

[
σ2
x

σ2
b

]
. (28)

In the simulation, σ2
b is chosen in such a way that SBNR=10 or SBNR=−5 dB. The measure of perfor-

mance considered is the mean-square-error (MSE) of the estimation error in dB form, i.e., 10lg(MSE).

The impulsive noise, nt, can be modeled as nt = ptit, where the impulse generating process it is a

random process representing an ever-present impulse component with variance σ2
i and pt is a switching

sequence of ones and zeros. If pt is a one (zero) then there is (is not) an impulse present in the t-th

sample. To model an i.i.d. impulse noise the switching sequence, pt, is typically chosen to be a Bernoulli

random process with P (pt = 1) = ε.

Unless otherwise specified, the following parameters will be used: adaptive FIR filter order d = 5;

sequence length n = 10000; the forgetting factors λ = 0.99, β = 0.99, λσ = 0.99, λξ = 0.99; regularization

parameters δ = 1, α = 1 (10 dB) or δ = 100, α = 100 (−5 dB); impulse variance σ2
i = 300, ε = 0.1;

the threshold proportionality factor kζ = 3.0, kξ = 2.576, and the length of variance estimation windows

Nl = 10, Ne = 10. We take the conventional RLS algorithm [1] and the UAF [18] as comparisons.

Figure 3 shows the average MSE results of 50 independent experiments in both median SBNR (10

dB) and low SBNR (−5 dB). Impulses occur as a random Bernoulli process as described above between

n = 4001 and n = 4500. From Figure 3(a) and Figure 3(b), it is not difficult to see that the proposed UR-

RLS has the same performance as UAF, which has been shown in (10), when there is no impulsive noise.

Similar to the conclusions in [18], the unsupervised adaptive filters, UAF and UR-RLS, perform as well

as the conventional RLS transversal filter after a learning process during “impulse-free” circumstances.

However, the impulsive noise deteriorates the performance for both RLS and UAF, whereas only a slight

disturbance occurs for UR-RLS.

The UAF has the worst performance under impulsive circumstances, as the impulses affect both the

weight updating algorithm and the filtering process. For the uncorrupted desired signal, xt partially helps

suppress the impulsive noise in the weight updating process; hence the RLS FIR filter performs much

better than UAF. With the help of (2) and (4), the adverse effects of impulses are partially eliminated

from the UR-RLS.

5.2 Nonlinear, stochastic signal

Consider the following nonlinear clean signal [18]:

xt = 0.1xt−1 − 0.5 cos(3xt−1) + 0.4 sin(xt−2) + 0.1xt−2 + zt, t = 2, 3, . . . (29)

and parameter values and testing conditions are the same as that in Subsection 5.1. Again, the conven-

tional RLS algorithm and the UAF are used as comparisons.

Figure 4 shows the average MSE results of 50 independent experiments of conventional RLS, UAF and

the proposed UR-RLS algorithm for the nonlinear signal (29). The median SBNR condition (10 dB) in

Figure 4(a) again gives the similar results as for the AR(1) signal in Figure 3(a) as well as the low SBNR

case (−5 dB) in Figures 3(b) and 4(b).

5.3 Choice of the thresholds

This experiment evaluates an identical estimation of thresholds in (2) and (4). The signal and testing

conditions are chosen to be the same as that in Subsection 5.2, and SBNR=−5 dB.

Figure 5(a) presents the estimated threshold of the saturable nonlinear function in (4). It is easy to

see that the threshold is big enough to let those “impulse-free” lt pass through the nonlinear channel.
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Figure 3 MSE results of the various algorithms in the presence of the impulses for AR(1) signal: RLS, UAF, and UR-RLS.

Impulses in the observed noisy signal appear between n = 4001 and n = 4500.

Figure 4 MSE results of the various algorithms in the presence of the impulses for nonlinear signal: RLS, UAF, and

UR-RLS. Impulses in the observed noisy signal appear between n = 4001 and n = 4500.

Figure 5 Thresholds estimation of saturable nonlinear function and prediction error (kζ = 3.0, kξ = 2.576).

When there is impulsive noise, the threshold restricts the impulse corrupted signal extremely well, ensur-

ing that those impulses will not affect the weight updating process of the FIR filter. Figure 5(b) gives the

prediction error bound. Assumed to be a Gaussian process, the “impulse-free” input signal does not get

affected by the predicted ŷt|t−1 sequence with high probability. Since those impulse corrupted samples

are replaced by predicted signals, the FIR filter input vector also is not contaminated by the impulses.
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Figure 6 Initial output of FOG in a north finder in adverse environment and the UR-RLS filter’s output. Notice the

longitudinal axis of (b) has been greatly expanded compared with (a).

5.4 De-noising of fiber optic gyroscope signal

A fiber optic gyroscope (FOG) is used to sense the rotation of the earth, which is less than 0.0042◦/s,
in a four position north finder (used in seeking the direction of north). The angle random walk (ARW)

is 0.005◦/
√
h, sampling period T=10 ms, testing time is 60 s at each position, and the FIR filter order

d = 5. The SBNR is estimated according to the ARW value. Other initial values are the same as that in

Subsection 5.1.

The north finder is placed on a tripod, and the true value of the north is 1369.2 mil (82.152◦). The

total sampling time scale is 60 s at each position; that is, it takes about 4 minutes to get the north value.

Figure 6(a) shows the initial output of the FOG in the north finder at one position, where someone has

passed by when the FOG had been working. Human’s activities create large disturbance compared with

the measured valued of the earth’s rotation. The SBNR is approximately −3.06 dB. Using this signal

to calculate the north value, we get a value of 1298.6 mil (77.916◦) which causes a misalignment of 70.6

mil. Figure 6(b) presents the output of the UR-RLS adaptive filter. It is not difficult to see that the

large disturbance is almost eliminated from the initial FOG output, and the noise level is reduced, i.e.,

SBNR=6.13 dB. This impulse-eliminated signal results in an estimation of 1368.1 mil (82.086◦) with a

misalignment of only 1.1 mil.

6 Conclusion

An unsupervised robust adaptive filter by a least-squares means has been devised to implement impul-

sive noise suppression. The weight updating algorithm follows from the optimization of a certain cost

function subject to a time-dependent saturable nonlinear function constraint on the mismatch of the

estimation. Within the saturable nonlinear constraint, the adverse effect of impulsive noise gets par-

tially eliminated from the weight updating process. A predictor has been introduced to replace possible

impulse-contaminated samples of the input to the filter. A multi-step form of the predictor has also

been developed for situations when the impulses last more than one sampling period. Simulation and

experimental results showed that the UR-RLS adaptive filter performs as well as the conventional RLS

adaptive filter in “impulse-free” circumstances without requiring prior knowledge of the desired signals

rate of convergence and precision. The results also provided evidence of the proposed algorithm’s good

performance and robustness against impulsive noise.
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