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The problem of stability analysis of static recurrent neural networks with interval time-
varying delay is investigated in this paper. A new Lyapunov functional which contains
some new double integral and triple integral terms are introduced. Information about
the lower bound of the delay is fully used in the Lyapunov functional. Integral and double
integral terms in the derivative of the Lyapunov functional are divided into some parts to
get less conservative results. Some sufficient stability conditions are obtained in terms of
linear matrix inequality (LMI). Numerical examples are given to illustrate the effectiveness
of the proposed method.
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1. Introduction

During past several decades, recurrent neural networks have been applied in many areas such as speech recognition,
handwriting recognition, optimization problem, model identification and automatic control [1,2]. Although neural networks
can be implemented by very large scale integrated circuits, there inevitably exist some delays in neural networks due to the
limitation of the speed of transmission and switching of signals. It is well known that time-delay is usually a cause of insta-
bility and oscillations of recurrent neural networks. Therefore, the problem of stability of recurrent neural networks with
time-delay is of importance in both theory and practice. Many results on this topic have been obtained which can be clas-
sified into delay-dependent ones and delay-independent ones. Since delay-dependent stability conditions are usually less
conservative than delay-independent ones, much attention has been put into developing some less conservative delay-
dependent stability conditions [3–24].

Neural networks can be classified into two categories, that is, static neural networks and local field networks. In static
neural networks, neuron states are chosen as basic variables. While in local field networks, local field states are chosen as
basic variables. It has been proved that these two kinds of neural networks are not always equivalent [25]. Compared with
rich results for local field networks, results for static neural networks are much more scare. To mention a few, stability of
static recurrent neural networks with constant time-delay was investigated in [26] where new delay-dependent stability cri-
teria were established in the terms of LMI using delay-partitioning approach and Finsler’s lemma. By introducing some slack
matrices, delay-dependent stability conditions for static recurrent neural networks with time-varying delay were obtained
and expressed as LMIs [27]. By constructing a new Lyapunov functional and using s-procedure, both delay-dependent and
delay-independent stability conditions were developed for static recurrent neural networks with interval time-varying de-
lays in [28]. Stability and dissipativity analysis of static neural networks were investigated in [29].
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In this paper, stability analysis problem of static recurrent neural networks with interval time-varying delays is investi-
gated. As mentioned in our previous works [32,33], information about the lower bound of time-varying delay should be ta-
ken into account when constructing a Lyapunov functional. Therefore, a new Lyapunov functional containing some new
double-integral terms and triple-integral terms is introduced. Information about the lower bound of delay is more suffi-
ciently used in the Lyapunov functional. Based on the new Lyapunov functional, some less conservative delay-dependent
stability conditions are derived. Numerical examples are given to confirm the effectiveness of the proposed method.

Notations. Throughout this paper, the superscripts ‘-1’ and ‘T’ stand for the inverse and transpose of a matrix, respectively;
Rn denotes an n-dimensional Euclidean space; Rm�n is the set of all m� n real matrices; P > 0 means that the matrix P is
symmetric positive definite; I is an appropriately dimensional identity matrix.
2. Problem formulation

Consider the following static recurrent neural network with interval time-varying delay:
(2)
_uðtÞ ¼ �AuðtÞ þ gðWuðt � dðtÞÞ þ JÞ; ð1Þ
where uð�Þ ¼ u1ð�Þu2ð�Þ � � �unð�Þ½ �T is the neuron state vector, A ¼ diagfa1; a2; � � � ; ang with ai > 0; i ¼ 1;2; � � � ;n,

gðWuð�ÞÞ ¼ g1ðW1uð�ÞÞg2ðW2uð�ÞÞ � � � gnðWnuð�ÞÞ½ �T is the neuron activation function. W ¼ ½WT
1WT

2 � � �W
T
n�

T
is the delayed con-

nection weight matrix. J ¼ j1; j2; � � � ; jn½ �T is a constant input. d(t) is the time-varying delay and satisfies
h1 6 dðtÞ 6 h2 ð2Þ
and
_dðtÞ 6 l; ð3Þ
where 0 < h1 < h2 and l are constants.
The following assumption is made in this paper.

Assumption 1. Each bounded neuron activation function, gið�Þ; i ¼ 1;2; � � � ;n satisfies
bi 6
giðs1Þ � giðs2Þ

s1 � s2
6 li; 8s1; s2 2 R; s1 – s2; i ¼ 1;2; � � � ;n; ð4Þ
where bi; li; i ¼ 1;2; � � � ;n are known real constants.
Assumption 1 guarantees the existence of an equilibrium point of system (1) [30,31]. Denote that u� ¼ u�1u�2 � � �u�n

� �
is the

equilibrium point. Using the transformation xð�Þ ¼ uð�Þ � u�, system (1) can be converted to the following error system:
_xðtÞ ¼ �AxðtÞ þ f ðWxðt � dðtÞÞÞ; ð5Þ
where xð�Þ ¼ x1ð�Þx2ð�Þ � � � xnð�Þ½ �T is the state vector, f ðWxð�ÞÞ ¼ f1ðW1xð�ÞÞf2ðW2xð�ÞÞ � � � fnðWnxð�ÞÞ½ �T with
f ðWxð�ÞÞ ¼ gðWðxð�Þ þ u�Þ þ JÞ � gðWu� þ JÞ. It is easy to see that fið�Þ; i ¼ 1;2; � � � ;n, satisfies
bi 6
fiðs1Þ � fiðs2Þ

s1 � s2
6 li; f ið0Þ ¼ 0; 8s1; s2 2 R; s1 – s2; i ¼ 1;2; � � � ;n: ð6Þ
The following integral inequalities are introduced in the following lemma which is important in the derivation of main
results.

Lemma 1 ([32,34]). For any constant matrix Z > 0 and scalars 0 < h1 < h2;h12 ¼ h2 � h1 such that the following integrations are
well defined, then

(1) �
R t�h1

t�h2
xTðsÞZxðsÞds 6 � 1

h12

R t�h1
t�h2

xTðsÞdsZ
R t�h1

t�h2
xðsÞds,
�
Z �h1

�h2

Z t�h1

tþh
xTðsÞZxðsÞdsdh 6 � 2

h2
12

Z �h1

�h2

Z t�h1

tþh
xTðsÞdsdhZ

Z �h1

�h2

Z t�h1

tþh
xðsÞdsdh:
3. Main results

In this section, some new delay-dependent stability criteria are derived by introducing a new Lyapunov functional and
using a new method to estimate the derivative of the Lyapunov functional.
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Denote ĥðtÞ ¼ colfxðtÞ; xðt � dðtÞÞ; xðt � h1Þ; xðt � h2Þ; f ðWxðtÞÞ; f ðWxðt � dðtÞÞÞ; _xðt � dðtÞÞ; _xðt � h1Þ; _xðt � h2Þ;
R t

t�h1
xðsÞds

; f ðWxðt � h1ÞÞ; f ðWxðt � h2ÞÞg. The following theorem presents a delay-dependent stability condition for system (5).

Theorem 2. For given scalars 0 < h1 < h2 and l, system (5) is asymptotically stable for any time-varying delay satisfying (2), (3)
if there exist matrices P ¼ Pij

� �
5�5 > 0;Q ¼ Qij

� �
3�3 P 0; Z ¼ Zij

� �
3�3 P 0;R ¼ Rij

� �
3�3 P 0, X ¼ Xij

� �
2�2 P 0; S ¼ Sij

� �
2�2 P 0;

U1 P 0;U2 P 0, nonnegative diagonal matrices K; T and K and any matrices M ¼ MT
1 MT

2 MT
3

h iT
,

N ¼ NT
1 NT

2 NT
3

h iT
;H ¼ HT

1 HT
2 HT

3

h iT
, F ¼ FT

1 FT
2 FT

3

h iT
with appropriate dimensions such that the following LMIs holds:
D h12!1 �h12M̂ h2
12
2 Ĥ AT

c Y

� �h12S11 �h12S12 0 0
� � �h12S22 0 0

� � � � h2
12
2 U2 0

� � � � �Y

2
66666664

3
77777775
< 0; ð7Þ

H h12!2 �h12N̂ h2
12
2 F̂ AT

c Y
� �h12S11 �h12S12 0 0
� � �h12S22 0 0

� � � � h2
12
2 U2 0

� � � � �Y

2
66666664

3
77777775
< 0; ð8Þ
where
D ¼ Nþ ĤE3;

H ¼ Nþ F̂E2 � ðE3 � E2ÞU2ðE3 � E2ÞT ;

N ¼ Nij
� �

7�7 C

� X

" #
;

N11 ¼ �P11A� AT P11 � Z12A� AT ZT
12 � h1X12A� h1AT XT

12 þ P14 þ PT
14 þ Z11 þ h1X11

� 1
h1

X22 � 2U1 �WT BKLW �WT LKBW;

N12 ¼ �M1 þ N1;

N13 ¼ �AT P12 þ PT
24 þ

1
h1

X22 þM1 � P14 þ P15;

N14 ¼ �AT P13 þ PT
34 � P15 � N1;

N15 ¼ �AT Z23 þ Z13 þWT LK þWT BK � AT WTK;

N16 ¼ P11 þ Z12 þ h1X12;

N22 ¼ �ð1� lÞQ11 �M2 �MT
2 þ N2 þ NT

2 �WT BTLW �WT LTBW ;

N23 ¼ M2;

N24 ¼ �N2;

N26 ¼ �ð1� lÞQ13 �MT
3 þ NT

3 þWT LT þWT BT;

N27 ¼ �ð1� lÞQ12;

N33 ¼ �P24 � PT
24 þ P25 þ PT

25 � Z11 þ R11 þ h12S11 �
1
h1

X22 þ Q 11;

N34 ¼ �P25 � PT
34 þ PT

35;

N44 ¼ �P35 � PT
35 � R11;

N36 ¼ PT
12 þMT

3;

N46 ¼ PT
13 � NT

3;
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N55 ¼ Z33 � 2K;

N56 ¼ ZT
23 þKW;

N66 ¼ �ð1� lÞQ 33 � 2T;

N67 ¼ �ð1� lÞQ T
23;

N77 ¼ �ð1� lÞQ 22;

N17 ¼ N25 ¼ N35 ¼ N37 ¼ N45 ¼ N47 ¼ N57 ¼ 0;

C ¼

P12 P13 C13 0 0
0 0 0 0 0

C31 P23 C33 C34 0
PT

23 P33 � R12 �PT
45 0 �R13

0 0 0 0 0
0 0 P14 0 0
0 0 0 0 0

2
666666666664

3
777777777775
;

C13 ¼ �AT P14 þ P44 �
1
h1

XT
12 þ

2
h1

U1;

C31 ¼ P22 � Z12 þ R12 þ h12S12 þ Q 12;

C33 ¼ �P44 þ PT
45 þ

1
h1

XT
12;

C34 ¼ �Z13 þ R13 þ Q 13;

X ¼

X11 0 P24 X14 0
� �R22 P34 0 �R23

� � � 1
h1

X11 � 2
h2

1
U1 0 0

� � � �Z33 þ R33 þ Q 33 0
� � � � �R33

2
6666664

3
7777775
;

X11 ¼ �Z22 þ R22 þ Q 22 þ h12S22 þ
h2

12

2
U2;

X14 ¼ �Z23 þ R23 þ Q 23;

L ¼ diagfl1; l2; � � � ; lng;
B ¼ diagfb1; b2; � � � ; bng;
Ac ¼ �A 0 0 0 0 I 0 0 0 0 0 0½ �T ;
E2 ¼ 0 I 0 0 0 0 0 0 0 0 0 0½ �T ;
E3 ¼ 0 0 I 0 0 0 0 0 0 0 0 0½ �T ;

Ŷ ¼ Z22 þ h1X22 þ h12S22 þ
h2

1

2
U1;

Ĥ ¼ HT
1 HT

2 0 0 0 HT
3 0 0 0 0 0 0

h iT
;

F̂ ¼ FT
1 FT

2 0 0 0 FT
3 0 0 0 0 0 0

h iT
;

M̂ ¼ MT
1 MT

2 0 0 0 MT
3 0 0 0 0 0 0

h iT
;

N̂ ¼ NT
1 NT

2 0 0 0 NT
3 0 0 0 0 0 0

h iT
;

Proof. Construct the following Lyapunov functional
VðxðtÞÞ ¼
X8

i¼1

ViðxðtÞÞ; ð9Þ
with
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V1ðxðtÞÞ ¼ fTðtÞPfðtÞ þ 2
Xn

i¼1

ki

Z WixðtÞ

0
fiðsÞds;

V2ðxðtÞÞ ¼
Z t�h1

t�dðtÞ
nTðsÞQnðsÞds;

V3ðxðtÞÞ ¼
Z t

t�h1

nTðsÞZnðsÞds;

V4ðxðtÞÞ ¼
Z t�h1

t�h2

nTðsÞRnðsÞds;

V5ðxðtÞÞ ¼
Z 0

�h1

Z t

tþh
zTðsÞXzðsÞdsdh;

V6ðxðtÞÞ ¼
Z �h1

�h2

Z t�h1

tþh
zTðsÞSzðsÞdsdh;

V7ðxðtÞÞ ¼
Z 0

�h1

Z 0

h

Z t

tþk

_xTðsÞU1 _xðsÞdsdkdh;

V8 xðtÞð Þ ¼
Z �h1

�h2

Z �h1

h

Z t�h1

tþk

_xT sð ÞU2 _x sð Þdsdkdh;
where fðtÞ ¼ col xðtÞ; xðt � h1Þ; xðt � h2Þ;
R t

t�h1
xðsÞds;

R t�h1
t�h2

xðsÞds
n o

; zðsÞ ¼ col xðsÞ; _xðsÞf g and nðsÞ ¼ col xðsÞ; _xðsÞ; f ðWxðsÞÞf g.
Taking the derivative of VðxðtÞÞ along the trajectories of system (5) yields
_V1ðxðtÞÞ ¼ 2fTðtÞP _fðtÞ þ 2
Xn

i¼1

kiWifi WixðtÞð Þ _xiðtÞ ¼ 2fTðtÞP _fðtÞ þ 2f T WxðtÞð ÞKW _xðtÞ; ð10Þ

_V2 xðtÞð Þ ¼ nTðt � h1ÞQn t � h1ð Þ � 1� _dðtÞ
� �

nT t � dðtÞð ÞQn t � dðtÞð Þ; ð11Þ

_V3ðxðtÞÞ ¼ nTðtÞZnðtÞ � nT t � h1ð ÞZn t � h1Þð Þ; ð12Þ

_V4ðxðtÞÞ ¼ nT t � h1ð ÞRn t � h1ð Þ � nT t � h2ð ÞRn t � h2Þð Þ; ð13Þ

_V5ðxðtÞÞ ¼ h1zTðtÞXzðtÞ �
Z t

t�h1

zTðsÞXzðsÞds; ð14Þ

_V6ðxðtÞÞ ¼ h12zT t � h1ð ÞSz t � h1ð Þ �
Z t�h1

t�h2

zTðsÞSzðsÞds

¼ h12zT t � h1ð ÞSz t � h1ð Þ �
Z t�h1

t�dðtÞ
zTðsÞSzðsÞds�

Z t�dðtÞ

t�h2

zTðsÞSzðsÞds; ð15Þ

_V7ðxðtÞÞ ¼
h2

1

2
_xTðtÞU1 _xðtÞ �

Z 0

�h1

Z t

tþh

_xTðsÞU1 _xðsÞdsdh; ð16Þ

_V8 xðtÞð Þ ¼ h2
12

2
_xT t � h1ð ÞU2 _x t � h1ð Þ �

Z �h1

�h2

Z t�h1

tþh

_xT sð ÞU2 _x sð Þdsdh

¼ h2
12

2
_xT t � h1ð ÞU2 _x t � h1ð Þ �

Z �h1

�d tð Þ

Z t�h1

tþh

_xT sð ÞU2 _x sð Þdsdh�
Z �d tð Þ

�h2

Z t�dðtÞ

tþh

_xT sð ÞU2 _x sð Þdsdh

� h2 � d tð Þð Þ
Z t�h1

t�d tð Þ
_xT sð ÞU2 _x sð Þds; ð17Þ
Similar to [35], the following equations hold:" #

2hT tð ÞM x t � h1ð Þ � x t � dðtÞð Þ �

Z t�h1

t�dðtÞ
_x sð Þds ¼ 0; ð18Þ

2hT tð ÞN x t � dðtÞð Þ � x t � h2ð Þ �
Z t�dðtÞ

t�h2

_x sð Þds

" #
¼ 0; ð19Þ



116 J. Sun, J. Chen / Applied Mathematics and Computation 221 (2013) 111–120
2hT tð ÞH dðtÞ � h1ð Þx t � h1ð Þ �
Z t�h1

t�dðtÞ
xðsÞds�

Z �h1

�dðtÞ

Z t�h1

tþh

_xðsÞdsdh

" #
¼ 0; ð20Þ

2hTðtÞF h2 � dðtÞð Þx t � dðtÞð Þ �
Z t�dðtÞ

t�h2

xðsÞds�
Z �dðtÞ

�h2

Z t�dðtÞ

tþh

_xðsÞdsdh

" #
¼ 0; ð21Þ
where hðtÞ ¼ colfxðtÞ; xðt � dðtÞÞ; f ðWxðt � dðtÞÞÞg.
From (6), for any K ¼ diagfK1;K2; � � � ;KngP 0; T ¼ diagfT1; T2; � � � ; TngP 0, the following inequalities hold
0 6 2 f TðWxðtÞÞ � xTðtÞWT B
h i

K LWxðtÞ � f ðWxðtÞÞ½ �; ð22Þ

0 6 2 f TðWxðt � dðtÞÞÞ � xTðt � dðtÞÞWT B
h i

T � LWxðt � dðtÞÞ � f ðWxðt � dðtÞÞÞ½ �; ð23Þ
From (10)–(23), one can obtain that
_VðxðtÞÞ 6 2fTðtÞP _fðtÞ þ 2f TðWxðtÞÞKW _xðtÞ � ð1� _dðtÞÞnTðt � dðtÞÞQnðt � dðtÞÞ þ nTðtÞZnðtÞ

� nTðt � h1ÞðZ � R� QÞnðt � h1ÞÞ þ h1zTðtÞXzðtÞ � nTðt � h2ÞRnðt � h2ÞÞ þ h12zTðt � h1ÞSzðt � h1Þ

þ h2
1

2
_xTðtÞU1 _xðtÞ þ h2

12

2
_xTðt � h1ÞU2 _xðt � h1Þ �

Z t

t�h1

zTðsÞXzðsÞds�
Z t�h1

t�dðtÞ
zTðsÞSzðsÞds�

Z t�dðtÞ

t�h2

zTðsÞSzðsÞds

�
Z 0

�h1

Z t

tþh

_xTðsÞU1 _xðsÞdsdh�
Z �h1

�dðtÞ

Z t�h1

tþh

_xTðsÞU2 _xðsÞdsdh�
Z �dðtÞ

�h2

Z t�dðtÞ

tþh

_xTðsÞU2 _xðsÞdsdh

� ðh2 � dðtÞÞ
Z t�h1

t�dðtÞ
_xTðsÞU2 _xðsÞdsþ 2hTðtÞM xðt � h1Þ � xðt � dðtÞÞ �

Z t�h1

t�dðtÞ
_xðsÞds

" #

þ 2hTðtÞN xðt � dðtÞÞ � xðt � h2Þ �
Z t�dðtÞ

t�h2

_xðsÞds

" #

þ 2hTðtÞH ðdðtÞ � h1Þxðt � h1Þ �
Z t�h1

t�dðtÞ
xðsÞds�

Z �h1

�dðtÞ

Z t�h1

tþh

_xðsÞdsdh

" #

þ 2hTðtÞF ðh2 � dðtÞÞxðt � dðtÞÞ �
Z t�dðtÞ

t�h2

xðsÞds�
Z �dðtÞ

�h2

Z t�dðtÞ

tþh

_xðsÞdsdh

" #

þ 2 f TðWxðtÞÞ � xTðtÞWT B
h i

K LWxðtÞ � f ðWxðtÞÞ½ �

þ 2 f TðWxðt � dðtÞÞÞ � xTðt � dðtÞÞWT B
h i

T LWxðt � dðtÞÞ � f ðWxðt � dðtÞÞÞ½ �: ð24Þ
Using Lemma 1, one can obtain
�
Z t

t�h1

zTðsÞXzðsÞds 6 � 1
h1

Z t

t�h1

zTðsÞdsX
Z t

t�h1

zðsÞds; ð25Þ

�
Z 0

�h1

Z t

tþh

_xTðsÞU1 _xðsÞdsdh 6 � 2

h2
1

Z 0

�h1

Z t

tþh

_xTðsÞdsdhU1

Z 0

�h1

Z t

tþh

_xðsÞdsdh

¼ � 2

h2
1

h1xTðtÞ �
Z t

t�h1

xTðsÞds
� �

U1 h1xðtÞ �
Z t

t�h1

xðsÞds
� �

; ð26Þ

�ðh2 � dðtÞÞ
Z t�h1

t�dðtÞ
_xTðsÞU2 _xðsÞds 6 �h2 � dðtÞ

h12

Z t�h1

t�dðtÞ
_xTðsÞdsU2

Z t�h1

t�dðtÞ
_xðsÞds; ð27Þ
Denoting E1 ¼ 0 0 0 0 I½ �, it is easy to see that
2
Z t�h1

t�h2

xTðsÞdsE1P _fðtÞ ¼ 2
Z t�h1

t�dðtÞ
xT sð Þdsþ

Z t�d tð Þ

t�h2

xT sð Þds

" #
E1P _fðtÞ: ð28Þ
Clearly,



J. Sun, J. Chen / Applied Mathematics and Computation 221 (2013) 111–120 117
2
Z t�h1

t�dðtÞ
xTðsÞdsE1P _fðtÞ � 2hTðtÞH

Z t�h1

t�dðtÞ
xðsÞds� 2hTðtÞM

Z t�h1

t�dðtÞ
_xðsÞds

6 ðdðtÞ � h1ÞĥTðtÞ !1 � M̂
h i

S�1 !1 � M̂
h iT

ĥðtÞ þ
Z t�h1

t�dðtÞ
zTðsÞSzðsÞds; ð29Þ

2
Z t�dðtÞ

t�h2

xTðsÞdsE1P _fðtÞ � 2hTðtÞF
Z t�dðtÞ

t�h2

xðsÞds� 2hTðtÞN
Z t�dðtÞ

t�h2

_xðsÞds

6 ðh2 � dðtÞÞĥTðtÞ !2 � N̂
h i

S�1 !2 � N̂
h iT

ĥðtÞ þ
Z t�dðtÞ

t�h2

zTðsÞSzðsÞds; ð30Þ

�2hTðtÞF
Z �dðtÞ

�h2

Z t�dðtÞ

tþh

_xðsÞdsdh 6
ðh2 � dðtÞÞ2

2
ĥTðtÞF̂U�1

2 F̂T ĥðtÞ þ
Z �dðtÞ

�h2

Z t�dðtÞ

tþh

_xTðsÞU2 _xðsÞdsdh; ð31Þ

�2hTðtÞH
Z �h1

�dðtÞ

Z t�h1

tþh

_xðsÞdsdh 6
ðdðtÞ � h1Þ2

2
ĥTðtÞĤU�1

2 ĤT ĥðtÞ þ
Z �h1

�dðtÞ

Z t�h1

tþh

_xTðsÞU2 _xðsÞdsdh; ð32Þ
From (24)–(32), after some simple mathematical manipulations, it can be obtained that
_VðxðtÞÞ 6 ĥTðtÞNdðtÞĥðtÞ ð33Þ
where NdðtÞ ¼ Nþðh2 � dðtÞÞF̂E2 þ ðdðtÞ � h1ÞĤE3 � h2�dðtÞ
h12
ðE3 � E2ÞU2ðE3 � E2ÞT þAT

c YAc þðdðtÞ � h1Þ !1 � M̂
h i

S�1 !1 � M̂
h iT

þ

ðh2 � dðtÞÞ !2 � N̂
h i

� S�1 !2 � N̂
h iT

þ ðh2�dðtÞÞ2
2 F̂U�1

2 F̂T þ ðdðtÞ�h1Þ2
2 ĤU�1

2 ĤT .

It is clear that ĥTðtÞNdðtÞĥðtÞ is a convex quadratic function for d(t) since its second order derivative with respect to d(t) is
F̂U�1

2 F̂T þ ĤU�1
2 ĤT P 0. Therefore, according to Lemma 1 in [36], ĥTðtÞNdðtÞĥðtÞ < 0 is equivalent to
NdðtÞjdðtÞ¼h1
< 0; ð34Þ

NdðtÞjdðtÞ¼h2
< 0: ð35Þ
Using Schur complement, (34), (35) is equivalent to (36), (37), respectively. Therefore, if (36), (37) are satisfied, system (5)
is asymptotically stable according to Lyapunov stability theory. h
Remark 3. By introducing a new Lyapunov functional (9), a less conservative stability condition is derived in Theorem 2. It

should be noted that Lyapunov functional (9) contains a new double integral term
R�h1
�h2

R t�h1
tþh zTðsÞSzðsÞdsdh and a new triple

integral term
R�h1
�h2

R�h1
h

R t�h1
tþk

_xTðsÞU2 _xðsÞdsdkdh. While in our previous work [33], a Lyapunov functional containing a double

integral term
R�h1
�h2

R t
tþh zTðsÞSzðsÞdsdh and a triple integral term

R�h1
�h2

R 0
h

R t
tþk

_xTðsÞU2 _xðsÞdsdkdh was introduced. After a careful

comparison, we can see clearly that information about the lower bound of the time-varying delay d (t) are used in the inner
integral upper limits of the double integral term and the triple integral term in Lyapunov functional (9). More specifically, the

inner integral upper limits of
R�h1
�h2

R t�h1
tþh zTðsÞSzðsÞdsdh is ‘t � h1’ but not ‘t’ and the integral upper limits of s and k ofR�h1

�h2

R�h1
h

R t�h1
tþk

_xTðsÞU2 _xðsÞdsdkdh are ‘t � h1’ and ‘�h1’ respectively but not ‘t’ and ‘0’. It is clear that information about the

lower bound of the time-varying delay d (t) are more sufficiently used in our Lyapunov functional. Therefore, Lyapunov func-
tional (9) may lead to less conservative results. In the next section, some numerical examples are given to confirm that
results in this paper are less conservative than some existing ones.
Remark 4. There will be some integral terms and double integral terms in the derivative of the Lyapunov functional (9) since

some double integral terms and triple integral terms are introduced in Lyapunov functional (9). For �
R t�h1

t�h2
zTðsÞXzðsÞds and

�
R�h1
�h2

R t�h1
tþh

_xTðsÞU2 _xðsÞdsdh, after being divided into some parts as shown in (15) and (17), some free-weighing matrices are

introduced to estimate them. This is because that unlike the integral inequality method, free-weighing matrices method does

not enlarge � dðtÞ�h1
h2�dðtÞ as � dðtÞ�h1

h12
and consequently leads to less conservative results. While for �

R t
t�h1

zTðsÞXzðsÞds and

�
R 0
�h1

R t
tþh

_xTðsÞU1 _xðsÞdsdh, the integral inequality method are used to cope with them. This is because the two terms only

involve information about the lower bound of time-varying delay d(t) and for such terms the integral inequality method
gives the same level performance as free-weighting matrices method but with less decision variables.

In some circumstances, the information about the derivative of the delay may not be available. For this case, the following
corollary can be obtained from Theorem 2 by setting Q ¼ 0.



Table 1
Upper bounds of the delay for different h1 and l.

h1 Methods l = 0.3 l = 0.5 l = 0.9 l unknown

0.1 Zuo et al. [28] 0.3900 0.2669 0.2668 0.2668
Wu et al. [29] 0.3912 0.2678 0.2677 0.2677
Our results 0.4249 0.3014 0.2857 0.2857

0.3 Zuo et al. [28] 0.4662 0.3996 0.3996 0.3996
Wu et al. [29] 0.4662 0.4007 0.4007 0.4007
Our results 0.5147 0.4134 0.4134 0.4134

0.5 Zuo et al. [28] 0.5640 0.5640 0.5640 0.5640
Wu et al. [29] 0.5643 0.5643 0.5643 0.5643
Our results 0.5743 0.5743 0.5743 0.5743

Table 2
Upper bounds of the delay for different l and h1.

h1 Methods l = 0.1 l = 0.2 l = 0.3 l = 0.9 l unknown

0.1 Zuo et al. [28] 0.8402 0.6551 0.5493 0.3289 0.3289
Wu et al. [29] 0.8402 0.6551 0.5493 0.3338 0.3338
Our results 0.9282 0.7128 0.5891 0.3399 0.3399

0.5 Zuo et al. [28] 0.8402 0.6551 0.5880 0.5880 0.5880
Wu et al. [29] 0.8402 0.6551 0.5886 0.5885 0.5885
Our results 1.0497 0.7515 0.6021 0.6021 0.6021
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Corollary 5. For given scalars 0 < h1 < h2 and l, system (5) is asymptotically stable for any time-varying delay satisfying (2) if
there exist matrices P ¼ Pij

� �
5�5 > 0; Z ¼ Zij

� �
3�3 P 0;R ¼ Rij

� �
3�3 P 0, X ¼ Xij

� �
2�2 P 0; S ¼ Sij

� �
2�2 P 0;U1 P 0;U2 P 0, non-

negative diagonal matrices K; T and K and any matrices M ¼ MT
1 MT

2 MT
3

h iT
, N ¼ NT

1 NT
2 NT

3

h iT
;H ¼ HT

1 HT
2 HT

3

h iT
,

F ¼ FT
1 FT

2 FT
3

h iT
with appropriate dimensions such that the following LMIs holds:
D̂ h12!1 �h12M̂ h2
12
2 Ĥ AT

c Y

� �h12S11 �h12S12 0 0
� � �h12S22 0 0

� � � � h2
12
2 U2 0

� � � � �Y

2
66666664

3
77777775
< 0; ð36Þ

Ĥ h12!2 �h12N̂ h2
12
2 F̂ AT

c Y

� �h12S11 �h12S12 0 0
� � �h12S22 0 0

� � � � h2
12
2 U2 0

� � � � �Y

2
66666664

3
77777775
< 0; ð37Þ
D̂ and Ĥ can be obtained respectively from D and H by setting Q ¼ 0 and the other symbols are the same as those defined in
Theorem 2.
4. Numerical examples

In this section, two numerical examples are given to illustrate the effectiveness of the proposed method, that is, the
method in this paper can yield less conservative results than some existing ones.

Example 1. Consider the following delayed static recurrent neural network with [26]
A ¼ diagf7:0214;7:4367g

W ¼
�6:4993 �12:0275
�0:6867 5:6614

� 	
L ¼ diagfl1; l2g ¼ diagf1;1g; B ¼ 0
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The objective is to calculate the upper bound of the delay for given l and h1. Stability conditions proposed in this paper are
implemented on an Intel (R) Core (TM) i5 processor at 2.40 GHz using Matlab LMI toolbox and the computation time is about
30.5s. Both the results obtained in [28,29] and the results obtained using the method proposed in this paper are listed in
Table 1. It is clear that our results are significant better than those in [28,29], that is, much bigger upper bounds of the delay
can be obtained in this paper.
Example 2. Consider the following delayed static recurrent neural network with [28]
A ¼ diagf7:3458;6:9987;5:5949g

W ¼
13:6014 �2:9616 �0:6936
7:4736 21:6810 3:2100
0:7290 �2:6334 �20:1300

2
64

3
75;

L ¼ diagfl1; l2; l3g ¼ diagf0:3680;0:1795;0:2876g; B ¼ 0;
Stability conditions proposed in this paper are implemented on an Intel (R) Core (TM) i5 processor at 2.40 GHz using Matlab
LMI toolbox and the computation time is about 74.5s. The corresponding upper bounds of the delay for various given l and
h1 calculated by Theorem 2 and Corollary 5 are listed in Table 2. For the purpose of comparison, results in [28,29] are also
listed in Table 2. It is easy to see that our results are much less conservative than those in [28,29].
5. Conclusion

In this paper, the stability analysis problem of static recurrent neural networks with interval time-varying delay has been
investigated. A new augmented Lyapunov functional which fully uses the information about the lower bound of the delay
and contains some new double integral terms and triple-integral terms has been introduced. A new method to estimate
the derivative of the Lyapunov functional has been proposed and some less conservative stability criteria have been ob-
tained. Numerical examples have illustrated the effectiveness of the proposed method.
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