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SUMMARY

The idea of using multiple models to improve transient performance in adaptive control systems with large
uncertainty or time varying parameters was introduced in 1990s. However, the commonly used scheme
with switching has some potential drawbacks. In this paper, a new multiple model scheme is proposed for
strict-feedback nonlinear systems. In order to avoid the possible chattering resulted from the controller’s
switching, a continuous controller based on the convex combination of parameter estimates of identification
models is presented, which ensures the better use of the information of identification models than the
switching scheme. Also, the number of necessary models is just one more than the dimension of the unknown
system parameter, which is more practical. Simulation studies are presented to demonstrate the efficiency of
the proposed scheme. Copyright © 2013 John Wiley & Sons, Ltd.

Received 3 December 2012; Revised 20 October 2013; Accepted 21 October 2013

KEY WORDS: multiple model; convex index; adaptive control; strict-feedback nonlinear system

1. INTRODUCTION

The classical adaptive control theory has been studied since 1960s, and a lot of literature can be
found in this area [1–4]. As an efficient way to deal with time-invariant systems with uncertain
parameters, it gains great improvements in recent decades. It is well accepted that when the uncer-
tainty is small, the classical adaptive control can achieve satisfactory closed-loop performance. But
when it comes to large uncertainties or time-varying systems, the classical adaptive control fails in
some sense [5]. Then, multiple model adaptive control, an improved adaptive control scheme using
multiple models, was proposed to deal with these limitations.

The general multiple model adaptive control scheme includes N parallel identification models,
a controller set, and a supervisor logic. The identification models may be fixed or adaptive, with at
least one model close enough to the real system. The controller set is designed to make sure that
at least one of the controllers can achieve satisfactory performance for the system. The supervisor
logic makes the decision of which identification model is best based on the performance of each
model and then determines the system input.

The idea of using multiple models in control problems has existed for a long time. In [6], mul-
tiple Kalman filter was first introduced to improve the accuracy of the state estimate in control
systems. The idea of using switching and tuning in multiple models for adaptive control was first
introduced in [7] and got further studied in [8, 9], where both fixed and adaptive models were used
in the identification model design and controller design. In [10], one possible method to design the
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model set was proposed, where the Vinnicombe metric and the controllable range of the robust con-
troller were used to decide the permitted uncertainty of each identification model, but it was hard to
extend this idea to high dimensional systems. It was demonstrated by extensive simulations [11,12]
that satisfactory performance could always be obtained if the number of identification model was
large enough. In order to avoid the chattering resulted from the suddenly change of controller, some
constraints were put on the switching logic in [13]. Scale-independent dwell-time switching, a well-
developed switching logic for linear and nonlinear systems, was proposed in [14]. It was proved that
there were finite switchings in finite time, and the average dwell time was adjustable in [15].

From a practical point of view, the multiple model scheme with switching has some potential
shortcomings. First, the control signal is not continuous, even with a large dwell time. This discon-
tinuity may lead to transient chattering of system performance. Second, the number of identification
model is always large, especially for high-dimensional systems, as it is needed that at least one in
the model set is sufficiently close to the real model. Third, there is no information communication
between the model sets, and the supervisor logic only depends on the output differences between
identification models. In [16–18], the combination of controllers based on the performance of each
identification model was proposed, which ensured the smoothness of control signal. In [19], a new
multiple model scheme was developed for linear systems considering the drawbacks mentioned ear-
lier. For the model set, only N C 1 models were needed if the dimension of the unknown system
parameter was N . It was proved that the unknown system parameter was always in the convex hull
of the identification parameters if it was in the hull at the beginning, and the convex combination of
identification errors was zero, which was used to design the second level adaptation for the convex
indexes. Further, a virtual model, which was designed based on the identification parameters and
convex indexes, was used to design the continuous controller.

In this paper, we mainly try to extend the idea in [19] to nonlinear systems. The main challenge
is that when the system is nonlinear, the system parameter may not be in the convex hull of identi-
fication parameters even if it is in the hull at the beginning, which further leads to the problem that
the convex combination of the identification errors is not zero. However, with certain identification
model structure and parameter update rule as designed in this paper, the system parameter can stay
in the convex hull all the time. As for the combination error, it is not always zero because of the
nonlinearity and initial conditions, but the exponential convergence to zero is obtained in this paper.
A continuous controller based on the combined information of all identification models is obtained
to avoid the possible chattering. Using the convex hull property in [19], only q C 1 identification
models are needed when the dimension of the unknown parameter is q. Then, the fixed identifica-
tion model set is considered and the convex indexes are treated as the unknown parameter, which
reduces the system uncertainty to a unit ball.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following strict-feedback nonlinear system:

† W

8<
:
Pxi D xiC1C �

T 'i . Nxi /, i D 1, 2, : : : ,n� 1
Pxn D uC �

T 'n.x/

y D x1

(1)

where Nxi D Œx1, x2 : : : , xi � , x D Œx1, x2, : : : , xn�
T 2 Rn is the state vector; u 2 R and y 2 R are

the system input and output, respectively; � 2 Rq is the unknown system parameter belonging to
a known compact set S and 'i . Nxi / 2 Rq , i D 1, 2, : : : ,n are known Lipschtiz functions. The main
purpose is to design a multiple model-based smooth controller to improve the transient performance
and, meanwhile, ensure the stability.

For the multiple model scheme, q C 1 parallel identification models ¹Isº
qC1
sD1 are needed.

These models have the same structure, but with different initial parameter estimates
�1.0/, �2.0/, : : : , �qC1.0/, which satisfies that the compact set S is within the convex hull of
�i .0/, i D 1, 2, : : : , qC 1.
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For design simplicity, the identification models are designed as follows:

Is W

8<
:
Pxsi D �� .xsi � xi /C xs.iC1/C �

T
s 'i . Nxi / , i D 1, 2, : : : ,n� 1

Pxsn D �� .xsn � xn/C uC �
T
s 'n.x/

ys D xs1

(2)

where s D 1, 2, : : : , qC 1 and � > 0 is a parameter to be designed.
Define the identification error as

esi D xsi � xi , Q�s D �s � � , i D 1, 2, : : : ,n

we can obtain the identification error system as

Pes D Aes C Q�
T
s '.x/, AD

0
BBBB@
�� 1 0 � � � 0

0 �� 1 � � � 0
...

...
...

...
...

0 0 0 � � � 1

0 0 0 � � � ��

1
CCCCA (3)

and the following Lemma can be easily obtained.

Lemma 1
If the initial parameter of the identification model is the same as that of the system model, the
identification error tends to 0 exponentially if � > 1.

The following facts and lemmas are needed in the derivation of main results.

Lemma 2 (Barbǎlat’s Lemma [3])
If limt!1 f .t/ exists and is finite, and Pf .t/ is a uniformly continuous function, then
limt!1

Pf .t/D 0.

Lemma 3 (PE condition [20])
Let g W Œ0,1� ! Rn be a continuous differentiable function and f W Œ0,1� ! Rn be a bounded
piecewise continuous function. Further assume that there exist positive constants �, t0,T0 such that,
for any unit row vector c of dimension n and any t > t0

1

T0

Z tCT0

t

jcf .s/jds > �.

Then, limt!1 g.t/D 0 if limt!1 Pg.t/D 0 and limt!1 g
T .t/f .t/D 0.

Fact 1
For 8" > 0 and 8� 2R, the following inequality holds

06 j�j � � � tanh.�="/6 0.2785". (4)

Fact 2
For 8� 2Rq , there exist qC 1 points, which can make a convex hull F and � 2F.

3. MULTIPLE MODEL-BASED CONTROLLER DESIGN

In this section, we consider the multiple model-based controller design for both adaptive and fixed
identification model sets. First, the parameter update of adaptive identification models is presented.
Then a smooth controller with the combination of identification parameters is designed based on
backstepping and a simple filter. The adaptation of convex indexes is designed with the identifica-
tion errors. Finally, when all the identification models are fixed, the convex indexes are treated as
unknown parameters, and some existing methods are used to analyze the design.
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3.1. Adaptive models

3.1.1. Controller design. Consider the error system (3), in order to make the identification model
(2) approach the system (1), the Lyapunov function is chosen as follows:

Vse D
1

2
e2s1C : : :C

1

2
e2snC

1

2
Q�Ts
Q�s (5)

and

PVse D� �

nX
iD1

e2si C

n�1X
iD1

esies.iC1/C Q�
T
s

 
PQ�s C

nX
iD1

esi'i . Nxi /

!

6� .�� 1/
nX
iD1

e2si �
1

2

n�1X
iD1

�
esi � es.iC1/

�2
C Q�Ts

 
PQ�s C

nX
iD1

esi'i . Nxi /

!
.

Choose the parameter adaptation law as

PQ�s D�

nX
iD1

esi'i . Nxi / (6)

and it comes to the following lemma.

Lemma 4
If � > 1 and the parameter adaptation law of identification model Is is set as (6), the identification
error tends to 0 exponentially.

Remark 1
According to (3) and Lemma 2, es! 0 and Pes is uniformly continuous, then Pes! 0, which implies
Q�Ts '.x/! 0. Also, PQ�s ! 0 in (6) as 'i . Nxi /, i D 1, 2, � � � ,n are Lipschitz and bounded. So, if for

any t , there exist �0, t0,T0 and a unit vector c such that 8t > t0, 1
T0

R tCT0
t

jc'.�/jd� > �0, it follows

from Lemma 3 that Q�s! 0.

Then for model Is , the controller is designed in the following steps:

Step 1,

Pxs1 D��.xs1 � x1/C xs2C �
T
s '1.x1/.

Let ´s1 D xs1, ´s2 D xs2 � ˛s1, and ˛s1 D � .xs1 � x1/� ks1´s1 � �Ts '1.x1/, then

Vs1 D
1

2
´2s1

PVs1 D� ks1´
2
s1C ´s1´s2

Step 2,

Pxs2 D�� .xs2 � x2/C xs3C �
T
s '2 .x1, x2/ .

Let ´s3 D xs3 � ˛s2, it comes that

Ṕ s2 D�� .xs2 � x2/C ´s3C ˛s2C �
T
s '2 .x1, x2/� P̨s1

and

P̨s1 D
@˛s1

@x1
Px1C

@˛s1

@xs1
Pxs1C

@˛s1

@�s
P�s C

@˛s1

@´s1
Ṕ s1

D
@˛s1

@x1
.x2C �'1.x1, t //C

@˛s1

@xs1
Pxs1C

@˛s1

@�s
P�s C

@˛s1

@´s1
Ṕ s1.
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As P̨s1 contains the unknown parameter � , it is not possible to obtain the exact value of P̨s1. Also,
the problem of term explosion in back-stepping makes the design complex. In order to avoid these
problems, the following filter is introduced:8̂<

:̂
�s2 Pxs2f C xs2f D ˛s1 � ˇs2�s2tanh

 
ˇs2

�
ys2f C´s2

�
&s2

!

ys2f D xs2f � ˛s1

. (7)

Let ˛s2 D � .xs2 � x2/� ´s1 � ks2´s2 � �Ts '2 .x1, x2/C Pxs2f and

Vs2 D Vs1C
1

2
´2s2C

1

2
y2s2f

then,

PVs2 D PVs1C ´s2
�
�´s1 � ks2´s2C ´s3C Pys2f

�
C ys2f Pys2f

D� ks1´
2
s1 � ks2´

2
s2C ´s2´s3C ´s2 Pys2f C ys2f Pys2f

and

´s2 Pys2f C ys2f Pys2f

D� ´s2

 
1

�s2
ys2f C ˇs2tanh

 
ˇs2

�
ys2f C ´s2

�
&s2

!
C P̨s1

!

� ys2f

 
1

�s2
ys2f C ˇs2tanh

 
ˇs2

�
ys2f C ´s2

�
&s2

!
C P̨s1

!

D�
1

�s2
´s2ys2f �

1

�s2
y2s2f �

�
´s2C ys2f

�
P̨s1 � ˇs2

�
´s2C ys2f

�
tanh

 
ˇs2

�
ys2f C ´s2

�
&s2

!

6� 1

�s2
´s2ys2f �

1

�s2
y2s2f C j

�
´s2C ys2f

�
j � j P̨s1j � ˇs2

�
´s2C ys2f

�
tanh

 
ˇs2

�
ys2f C ´s2

�
&s2

!

if ˇs2 >max j P̨s1j, it follows from Fact 1 that

´s2 Pys2f C ys2f Pys2f 6 �
1

�s2
´s2y2f �

1

�s2
y22f C 0.2785&s2

and

PVs2 6� ks1´2s1 � ks2´2s2C ´s2´s3 �
1

�s2
´s2y2f �

1

�s2
y2s2f C 0.2785&s2

6� ks1´2s1 �
�
ks2 �

1

4�s2

�
´2s2 �

1

�s2

�
´s2=2C ys2f

�2
C ´s2´s3C 0.2785&s2.

Step 3,. . . ,n-1,
Following the same design procedure as in step 2, it comes to

Vs.iC1/ D Vsi C
1

2
´2si C

1

2
y2sif

and

PVs.n�1/ 6� ks1´2s1 �
n�1X
iD2

��
ksi �

1

4�si

�
´2siC

1

�si

�
´si=2C ysif

�2�
C´s.n�1/´snC 0.2785

n�1X
iD2

&si .

Step n,
For identification model Is , let

Vsn D Vs.n�1/C
1

2
´2snC

1

2
y2snf .
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As for the proposed multiple model scheme, all the identification models share the same input, it
is necessary to take all the identification models into consideration to design the system input.

For the overall system, choose the following Lyapunov function:

V D

qC1X
sD1

Vsn. (8)

One can obtain that

PV D

qC1X
sD1

PVsn

6�
qC1X
sD1

´
ks1´

2
s1C

n�1X
iD2

��
ksi �

1

4�si

�
´2si C

1

�si

�
´si=2C ysif

�2	μ
C 0.2785

qC1X
sD1

n�1X
iD2

&si

C

qC1X
sD1

®
´s.n�1/´snC ´sn Ṕ snC ysnf Pysnf

¯

and

qC1X
sD1

¹´s.n�1/´snC ´sn Ṕ snC ysnf Pysnf º

D

qC1X
sD1

®
´s.n�1/´snC ´sn

�
�� .xsn � xn/C uC �

T
s 'n.x, t /� P̨s.n�1/

�
C ysnf Pysnf

¯

D

qC1X
sD1

®
´s.n�1/´snC ´sn

�
�� .xsn � xn/C uC �

T
s 'n.x, t /C ksn´sn � Pxsnf

�¯

C

qC1X
sD1

®
�ksn´

2
snC ´sn Pysnf C ysnf Pysnf

¯
.

It is clear from step 2 that

qC1X
sD1

®
�ksn´

2
snC ´sn Pysnf C ysnf Pysnf

¯

6�
qC1X
sD1

²�
ksn �

1

4�sn

�
´2snC

1

�n

�
´sn=2C ysnf

�2³
C 0.2785

qC1X
sD1

&sn.

For the system input u, the convex combination idea in [19] is used, and it is supposed to have the
following form:

uD h.x/C ˛�,2 �

qC1X
pD1

�
�p�p

�T
'n.x/ (9)

where h.x/ and �s are to be designed later and satisfy

²
�1C �2C : : :C �qC1 D 1
�s > 0, s D 1, 2, : : : , qC 1

. (10)
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Then,

qC1X
sD1

®
´s.n�1/´snC ´sn

�
�� .xsn � xn/C uC �

T
s 'n.x/C ksn´sn � Pxsnf

�¯

D

qC1X
sD1

8<
:´sn

0
@´s.n�1/ � � .xsn � xn/C h.x/C ˛�,2 �

qC1X
pD1

�
�p�p

�T
'n.x/C �

T
s 'n.x/C kn´sn

� Pxsnf

1
A
9=
;

D

qC1X
sD1

´sn
�
´s.n�1/ � � .xsn � xn/C kn´sn � Pxsnf C h.x/

�

C

qC1X
sD1

´sn

0
B@˛�,2C

0
@�s � qC1X

pD1

�p�p

1
A
T

'n.x/

1
CA

6M � j
qC1X
sD1

´snj C h.x/

qC1X
sD1

´snCN � j

qC1X
sD1

´snj C ˛�,2

qC1X
sD1

´sn

where M D max16s6qC1j´s.n�1/ � � .xsn � xn/C kn´sn � Pxsnf j and N D max16s6qC1j.�s �PqC1
pD1 �p�p/

T 'n.x/j. Let

h.x/D�M � tanh

 
M
PqC1
sD1 ´sn

&m

!

˛�,2 D�N � tanh

 
N
PqC1
sD1 ´sn

"n

!
.

(11)

Then,

qC1X
sD1

®
´s.n�1/´snC ´sn

�
�� .xsn � xn/C uC �

T
s 'n.x/C kn´sn � Pxsnf

�¯
6 0.2785&mC 0.2785"n

and

PV 6 �
qC1X
sD1

´
ks1´

2
s1C

nX
iD2

��
ksi �

1

4�si

�
´2si C

1

�si

�
´si=2C ysif

�2	μ
C v (12)

where v D 0.2785
�PqC1

sD1

Pn
iD2 &si C &mC "n

�

3.1.2. Second level design. As for the convex index design, set the virtual model with parameter
�v , which lies in the convex hull of the initial parameters of identification models, then there exist
¹�1, �2, : : : , �qC1º such that8<

:
�1 O�1.t0/C �2 O�2.t0/C : : :C �qC1 O�qC1.t0/D �v.t0/
�1C �2C : : :C �qC1 D 1
�i > 0, i D 1, 2, : : : , qC 1.

(13)
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Then, one can obtain that

P�v.t/D

qC1X
sD1

�s
PO�s.t/

D�

qC1X
sD1

�s

nX
iD1

esi'i . Nxi /

D�

nX
iD1

'i . Nxi /

qC1X
sD1

�sesi .

(14)

Further with the error system (3), it follows that the identification error of the virtual model is

ev D

qC1X
sD1

�ses (15)

and the parameter update is

P�v.t/D�

nX
iD1

evi'i . Nxi / (16)

which is identical to all the identification models. This fact further implies that all the virtual models
start in the convex hull of initial identification parameters at time t0 will lie in it at time t , which has
been proved in [19].

Then with Lemma 1, it comes that �1e1C �2e2C : : :C �qC1eqC1! 0 exponentially as t !1,
which makes it reasonable to set the following equation as in [19]


e1.t/, e2.t/, : : : , eqC1.t/
�
	 D 0 (17)

where 	 D


�1, �2, : : : , �qC1

�T
. Also, the character of convex index makes 	 D



N	 , 1�

Pq
sD1 �s

�
,

and (17) can be rewritten as

E.t/ N	 D 
.t/ (18)

where Es.t/D es.t/� eqC1.t/, s D 1, 2, : : : , q and 
.t/D�eqC1.t/.
Then the estimate model of (18) can be obtained as

E.t/ ON	 D 
.t/ (19)

and the adaptation law can be easily obtained as

PON	.t/D�E.t/TE.t/ ON	.t/CE.t/T 
.t/, N	 D P roj ON�.t/2C
¹ ON	º (20)

where C D
®�
�1, �2, : : : , �q

�
j�s > 0,

Pq
sD1 �s < 1, s D 1, 2, : : : , q

¯
.

Remark 2
According to Fact 2, q C 1 initial points O�i .t0/ can make a convex hull of unknown parameter � ,
which makes sure that q C 1 identification models are enough for the proposed multiple model
scheme.

Remark 3
When there is no uncertainty for � , it is possible to use q points to make the convex hull, but it is
hard to find such q points, and it cannot cover the uncertainty case. Also, q C m .m > 1/ points
can be used to make the convex hull. However, the convex combination indexes are not unique any
more, which leads to more difficulties in analysis.
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3.2. Fixed models

When all the identification models are adaptive, it is possible that the parameters of each identi-
fication model converge to a settle point or a small region of the system parameter. If the system
parameter changes, all the identification models start from one point. Then, there is nothing but a
single model adaptive control. So, the fixed models in multiple model scheme are used here. The
parameter of identification models is fixed, and the convex indexes will be adaptively updated.

Suppose the system parameter � D
PqC1
sD1 �s�s , then the system model can be written as

8̂̂
<
ˆ̂:
Pxi D xiC1C

�PqC1
sD1 �s�s

�T
'i . Nxi / , i D 1, 2, : : : ,n� 1

Pxn D uC
�PqC1

sD1 �s�s

�T
'n.x/

y D x1.

(21)

Define N� D


�1, �2, : : : , �qC1

�
, � D



�1, �2, : : : , �qC1

�T
and  i . Nxi /D N�T � 'i . Nxi /, then8<

:
Pxi D xiC1C �

T i . Nxi / i D 1, 2, : : : ,n� 1
Pxn D uC �

T i .x/

y D x1

(22)

where � is treated as an unknown parameter that satisfies (10). By using this transformation, the
uncertainty of � is replaced by � , which is in a unit ball, and the uncertainty is much smaller. Then
by applying the design methods in [4][21], it comes that all the signals in (22) are bounded, and the
system output uniformly tends to an arbitrary small bound of the original point.

4. STABILITY ANALYSIS

In this section, the stability analysis is given for the proposed multiple model scheme. When the
identification models are adaptive, the stability analysis is based on the controller design procedure
in Section 3.1 and presented in Theorem 1. When the identification models are fixed, the controller
design and the stability analysis are similar to [21] and presented in Theorem 2.

Theorem 1
Consider the system (1), identification model (2), parameter adaptation law (6), and controller (9)-
(11), then there exist ksi , �si such that all the signals are uniformly bounded and ´si ,ysif can
converge to an arbitrary small neighborhood of the original point.

Proof
From Lyapunov function (8), it can be obtained that

PV 6�
qC1X
sD1

´
ks1´

2
s1C

nX
iD2

��
ksi �

1

4�si

�
´2si C

1

�si

�
´si=2C ysif

�2	μ
C v (23)

where v D 0.2785.
PqC1
sD1

Pn
iD2 &si C &mC "n/ if there exist the following control parameters:8̂̂̂

<̂
ˆ̂̂̂:

ks1 > 0

ksi �
1
4�si

> 0

�si > 0

s D 1, 2, : : : , qC 1
i D 1, 2, : : : ,n

(24)

then,

PV 6 �2�V C �
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where � is a designed parameter. As � is also a designed parameter, then using the standard Lya-
punov analysis, it comes to the conclusion that all the signals in the identification models are
uniformly bounded, and ´si ,ysif can converge to an arbitrary small neighborhood of the original
point.

Then, according to Lemma 2, the signals of system (1) are bounded, and the output tends an
arbitrary small neighborhood of the original point uniformly. �

Remark 4
According to Remark 1 and the character of the convex indexes, the conclusion can be drawn that
under the condition of Remark 1, the combination of parameter estimate converges to the true
parameter.

Theorem 2
Consider the system (1) and (22) for fixed identification model set. If the controller design and
parameter adaptation law in [4][21] are applied, asymptotical output tracking and true parameter
estimates can be achieved if proper control parameters are carefully designed.

Proof
Consider the original system (1), if the transformation (21 is applied, it can be rewritten as (22),
which is in canonical strict-feedback form with � as the unknown parameter.Then by applying the
design procedure in [4][21], the conclusion can be drawn that the tracking error can converge to a
designed small region of zero asymptotically. �

Remark 5
By applying the transformation (21), the uncertainty zone of (22) is just a unit ball, which may be
much smaller than the uncertainty of the original system (1), as the multiple model scheme is mainly
proposed for the system with large uncertainty. Then, it is much easier and more efficient to design
the controller.

5. SIMULATION EXAMPLES

To illustrate the advantage of the proposed multiple model scheme, two simulation examples are
given in this section.

Example 1
Consider the following nonlinear system:8<

:
Px1 D x2C � � '1.x1/
Px2 D uC � � '2 .x1, x2/
y D x1

(25)

where '1.x1/ D cos.x1/, '2 .x1, x2/ D x1 C cos .x2/, and � 2 Œ1, 20� is the unknown
parameter. Suppose the true parameter �� D 4. The initial parameter for the classical adaptive
controller is �.0/ D 10. For multiple model with switching, five identification models are used
with initial parameters as ¹1, 5, 10, 15, 20º. For multiple model with convex index, two identi-
fication models are used with initial parameters ¹1, 20º and initial convex indexes �1 D 0.3,
�2 D 0.7. The objective is to regulate the output to 0, and the simulation results are shown
in Figures 1–3.

As shown in Figure 1, the system output of different schemes all tend to zero uniformly but with
different transient performance. According to the solid line, the system needs a long time to settle
down when using the classical adaptive control, and the transient performance is not very good with
a big overshoot. Then for the multiple model with switching scheme, the settling time is almost the
same, but the transient performance improves a lot, where the overshoot is much smaller. It follows
from the point-dash line that when the smooth controller with the convex multiple model scheme is
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Figure 1. The system output.
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Figure 2. The parameter convergence.
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Figure 3. The convex index.

applied, the performance is more smooth and the settling time also decreases, which demonstrates
the efficiency of the proposed method. For the parameter convergence in Figure 2, both of the clas-
sical adaptive method and the proposed method can converge to the true value, and the proposed
scheme possesses a deeply improved transient performance. In Figure 3, it follows that the con-
vex index converges to a steady value, which is proved in the theory, and also corresponds to the
convergence of the parameter.
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Figure 4. The tracking error.

Example 2
Consider the following nonlinear system:8<

:
Px1 D x2C �

T � '1.x1/

Px2 D uC �
T � '2.x1, x2/

y D x1

(26)

where '1.x1/D Œcos.x1/, x1C cos.x1/�
T , '2 .x1, x2/D Œcos.x1/, x1C cos.x2/�

T , � D Œ�1, �2�
T ,

�1 2 Œ0, 10�, �2 2 Œ0, 10� is the unknown parameter. Suppose the true parameter �� D Œ3, 2�T . The
initial parameter for the classical adaptive controller is �.0/ D Œ6, 6�T . For multiple model with
switching, 10 identification models are used with initial parameters as®

Œ0, 0�T , Œ0, 5�T , Œ0, 10�T , Œ3, 0�T , Œ3, 5�T , Œ3, 10�T , Œ6, 0�T , Œ6, 5�T , Œ6, 10�T , Œ9, 2�T
¯

.

For multiple model with convex index, three identification models are used with initial parameters®
Œ0, 0�T , Œ0, 10�T , Œ10, 0�T

¯
and initial convex index �1 D 0.3, �2 D 0.3, �3 D 0.4. The objective is to track the signal sin.t/.

As shown in Figure 4, all of the output under different methods can track the signal sin.t/ very
well. However, the classical adaptive control needs more time to track the signal than the others,
and the transient performance is not very good. For the multiple model scheme, both of them can
track the signal in a shorter time, and the tracking error is much smaller than the classical method.
Further, the proposed method has a smoother performance than the switching scheme.

6. CONCLUSION

This paper has presented a new multiple model scheme with convex index for strict-feedback non-
linear systems. A continuous controller with convex combination of the parameter estimates of the
identification models has been used to avoid the possible chattering and to improve the transient
performance. Because of the convex hull property, only q C 1 models are needed, which is more
practical than the switching scheme. Also, the information of identification models has been more
fully used. The simulation examples have demonstrated the efficiency of the proposed scheme.
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