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SUMMARY

The problem of the stability of a linear system with an interval time-varying delay is investigated. A new
Lyapunov–Krasovskii functional that fully uses information about the lower bound of the time-varying delay
is constructed to derive new stability criteria. It is proved that the proposed Lyapunov–Krasovskii functional
can lead to less conservative results than some existing ones. Based on the proposed Lyapunov–Krasovskii
functional, two stability conditions are developed using two different methods to estimate Lyapunov–
Krasovskii functional’s derivative. Two numerical examples are given to illustrate that the two stability
conditions are complementary and yield a larger maximum upper bound of the time-varying delay than
some existing results. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Consider the linear system with an interval time-varying delay described by²
Px.t/D Ax.t/CA1x.t � d.t//, t > 0
x.�/D �.�/, � 2 Œ�h2, 0�

(1)

where x.t/ 2Rn is the state vector, A 2Rn�n and A1 2Rn�n are constant system matrices, the ini-
tial condition �.�/ is a continuously differentiable vector-valued function, and d.t/ is a time-varying
differentiable function satisfying

0 < h1 6 d.t/6 h2, Pd.t/6 � (2)

where 0 < h1 6 h2 and � are constants.
The problem of stability of the system described by (1)–(2) has received much attention in recent

years, because it can model some systems such as networked control systems [1, 2]. Several tech-
niques can be utilized to deal with the stability problem. For example, a discretized Lyapunov
functional method was proposed in [3, 4]. This method is very effective, and a coarse discretiza-
tion can yield satisfactory results. A descriptor transformation method was developed in [5], which
is most effective among the four kind of model transformation methods in the literature. To further
reduce conservatism of stability conditions, a free-weighting matrices method was proposed by He
et al. [6,7]. This method does not introduce any model transformations and bounding techniques for
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cross terms and can yield less conservative results than the descriptor transformation method. Jensen
inequality technique [8, 9] was also used to bound the integral terms in the derivative of Lyapunov
functional. A convex combination technique was developed in [9–11] to obtain some less conserva-
tive stability criteria for linear systems with time-varying delay. A delay fractioning scheme was put
forward in [12] where the delay is divided into some sub-intervals and a new Lyapunov functional
was established to derive less conservative results. Besides the results mentioned previously, some
delay-dependent stability criteria have been reported in the literature [13–24].

As mentioned in our previous work [25], information about the lower bound of time-varying delay
d.t/ should be taken into consideration when constructing a Lyapunov–Krasovskii functional. As a
consequence, the following Lyaunov–Krasovskii functional containing some information about the
lower bound of delay was introduced in [25]

V.xt /D �
T .t/P�.t/C

Z t�h1

t�d.t/

xT .s/Sx.s/ds

C

Z t

t�h1

�T .s/Q1�.s/dsC

Z t�h1

t�h2

�T .s/Q2�.s/ds

C

Z 0

�h1

Z t

tC�

PxT .s/Z1 Px.s/dsd� C

Z �h1
�h2

Z t

tC�

PxT .s/Z2 Px.s/dsd�

C

Z 0

�h1

Z t

tC�

xT .s/Z3x.s/dsd� C

Z �h1
�h2

Z t

tC�

xT .s/Z4x.s/dsd�

C

Z 0

�h1

Z 0

�

Z t

tC�

PxT .s/R1 Px.s/dsd�d� C

Z �h1
�h2

Z 0

�

Z t

tC�

PxT .s/R2 Px.s/dsd�d�

(3)

where �.t/ D col¹x.t/, x.t � h1/, x.t � h2/,
R t
t�h1

x.s/ds,
R t�h1
t�h2

x.s/dsº, �.s/ D col¹x.s/, Px.s/º.
However, from the Lyapunov–Krasovskii functional (3), one can see clearly that there is no infor-
mation about the lower bound of time-varying delay d.t/ in the inner integral upper limits of the
double integral terms and the triple integral term. Therefore, we think that Lyapunov–Krasovskii
functional (3) does not sufficiently use the information about the lower bound of delay and thus may
lead to conservative results. Based on this observation, the natural question is as follows: How can
one improve the result in [25] by including more information about the lower bound of time-varying
delay d.t/? The answer to this question will enhance the stability analysis of the system described
by (1)–(2). For this purpose, we construct the following Lyapunov–Krasovskii functional

V.xt /D �
T .t/P�.t/C

Z t�h1

t�d.t/

xT .s/Sx.s/ds

C

Z t

t�h1

�T .s/Q1�.s/dsC

Z t�h1

t�h2

�T .s/Q2�.s/ds

C

Z 0

�h1

Z t

tC�

PxT .s/Z1 Px.s/dsd� C

Z �h1
�h2

Z t�h1

tC�

PxT .s/Z2 Px.s/dsd�

C

Z 0

�h1

Z t

tC�

xT .s/Z3x.s/dsd� C

Z �h1
�h2

Z t�h1

tC�

xT .s/Z4x.s/dsd�

C

Z 0

�h1

Z 0

�

Z t

tC�

PxT .s/R1 Px.s/dsd�d� C

Z �h1
�h2

Z �h1
�

Z t�h1

tC�

PxT .s/R2 Px.s/dsd�d�

(4)

After comparing (3) with (4) carefully, one can see that the inner integral upper limits ofR �h1
�h2

R t�h1
tC� Px

T .s/Z2 Px.s/dsd� and
R �h1
�h2

R t�h1
tC� xT .s/Z4x.s/dsd� are t � h1, while the inner inte-

gral upper limits of the triple integral term
R �h1
�h2

R �h1
�

R t�h1
tC� Px

T .s/R2 Px.s/dsd�d� are �h1 and
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t � h1. In this paper, we will prove that less conservative results can be obtained by employing
Lyapunov–Krasovskii functional (4) than using (3).

Notice that there are some double-integral terms such as �
R �h1
�h2

R t�h1
tC� Px

T .s/R2 Px.s/dsd� in the
derivative of the Lyapunov–Krasovskii functional due to the triple-integral terms in (4). How to deal
with such terms appropriately is another problem we need to investigate. In this paper, two different
methods are utilized to cope with this term. One method is to divide it into three parts, and then
estimate these three parts, respectively. Another method is to introduce some free-weighting matri-
ces and use a quadratic inequality to eliminate the double integral term. Two numerical examples
illustrate that the above two methods yield complementary results.

2. MAIN RESULTS

Denote h?isym D .?/ C .?/T , h12 D h2 � h1, hs D
h2
2
�h2
1

2
, ˇ1 D d.t/ � h1, ˇ2 D h2 � d.t/,

	.t/ D col¹x.t/, x.t � d.t//, x.t � h1/, x.t � h2/, Px.t � h1/, Px.t � h2/,
R t
t�h1

x.s/dsº and ei
(i D 1, 2, � � � , 7) are block entry matrices. For example, eT3 D Œ0 0 I 0 0 0 0�. We now state and
establish the following stability result for the system described by (1)–(2).

Theorem 1
Given scalars h1, h2, and �, the system described by (1)–(2) is asymptotically stable if there exist
matrices P > 0, Q1 > 0, Q2 > 0, S > 0, Zj > 0, j D 1, � � � , 4, R1 > 0, R2 > 0 and any matrices
Hi , Fi , Mi , and Ni , i D 1, � � � , 4 with appropriate dimensions such that

„1 D

2
6666664

‚ ‡T � OM OF OM

� � Z4
h12

0 0

� � � Z2
h12

0

� � � �2R2
h2
12

3
7777775
< 0 (5)

„2 D

2
66666664


C
D
h12 ONe

T
3

E
sym

‡T � ON OH ON

� � Z4
h12

0 0

� � � Z2
h12

0

� � � �2R2
h2
12

3
77777775
< 0 (6)

where

‚D
C
D
h12 OMeT2

E
sym
� .e3 � e2/R2

�
eT3 � e

T
2

�

D

D
ˆP‰T C OF

�
eT2 � e

T
4

�
C OH

�
eT3 � e

T
2

�E
sym
CATc YAc Cƒ

� Œe4 e6�Q2 Œe4 e6�
T C Œe3 e5� .Q2 �Q1/ Œe3 e5�

T

C Œe1 Ac �Q1 Œe1 Ac �
T � .e1 � e3/

Z1

h1

�
eT1 � e

T
3

�

� .h1e1 � e7/
2R1

h21

�
h1e

T
1 � e

T
7

�
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ˆD Œe1 e3 e4 e7 0�

‰ D
�
ATc e5 e6 e1 � e3 e3 � e4

�

ƒD diag

²
h1Z3, � .1��/S , S C h12Z4, 0, h12Z2C

h212
2
R2, 0, �

Z3

h1

³

Ac D ŒA A1 0 0 0 0 0�

Y D h1Z1C
h21
2
R1

‡ D
�
P T15ACP

T
45 P

T
15A1 �P

T
45CP55 �P55 P

T
25 P

T
35 0

�
ON D

�
N T
1 N T

2 N T
3 N T

4 0 0 0
�T

OM D
�
M T
1 M T

2 M T
3 M T

4 0 0 0
�T

OF D
�
F T1 F T2 F T3 F T4 0 0 0

�T
OH D

�
HT
1 HT

2 HT
3 HT

4 0 0 0
�T

Proof
Notice that similar to [6, 7], the following equations hold

˛1 WD 2	
T .t/ OH

"
x.t � h1/� x.t � d.t//�

Z t�h1

t�d.t/

Px.s/ds

#
D 0 (7)

˛2 WD 2	
T .t/ OF

"
x.t � d.t//� x.t � h2/�

Z t�d.t/

t�h2

Px.s/ds

#
D 0 (8)

˛3 WD 2	
T .t/ ON

"
ˇ1x.t � h1/�

Z t�h1

t�d.t/

x.s/ds �

Z �h1
�d.t/

Z t�h1

tC�

Px.s/dsd�

#
D 0 (9)

˛4 WD 2	
T .t/ OM

"
ˇ2x.t � d.t//�

Z t�d.t/

t�h2

x.s/ds �

Z �d.t/
�h2

Z t�d.t/

tC�

Px.s/dsd�

#
D 0 (10)

Notice also that the following equation holds

�

Z �h1
�h2

Z t�h1

tC�

PxT .s/R2 Px.s/dsd� D�

Z �d.t/
�h2

Z t�d.t/

tC�

PxT .s/R2 Px.s/dsd�

�

Z �h1
�d.t/

Z t�h1

tC�

PxT .s/R2 Px.s/dsd� � ˇ2

Z t�h1

t�d.t/

PxT .s/R2 Px.s/ds

(11)

Taking the derivative of the Lyapunov–Krasovskii functional (4) along the trajectory of system
(1) yields
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PV .xt /D 2�
T .t/P P�.t/C �T .t/Q1�.t/C �

T .t � h1/.Q2 �Q1/�.t � h1/

� �T .t � h2/Q2�.t � h2/C x
T .t � h1/.S C h12Z4/x.t � h1/

C PxT .t/Y Px.t/� .1� Pd.t//xT .t � d.t//Sx.t � d.t//

C PxT .t � h1/

�
h12Z2C

h212
2
R2

�
Px.t � h1/C h1x

T .t/Z3x.t/

�

Z t

t�h1

PxT .s/Z1 Px.s/ds �

Z t�d.t/

t�h2

PxT .s/Z2 Px.s/ds

�

Z t�h1

t�d.t/

PxT .s/Z2 Px.s/ds �

Z t

t�h1

xT .s/Z3x.s/ds

�

Z t�h1

t�h2

xT .s/Z4x.s/ds �

Z 0

�h1

Z t

tC�

PxT .s/R1 Px.s/dsd�

�

Z �d.t/
�h2

Z t�d.t/

tC�

PxT .s/R2 Px.s/dsd� �

Z �h1
�d.t/

Z t�h1

tC�

PxT .s/R2 Px.s/dsd�

� ˇ2

Z t�h1

t�d.t/

PxT .s/R2 Px.s/dsC

4X
iD1

˛i (12)

Using Jensen inequality [8], one can obtain

�

Z t

t�h1

PxT .s/Z1 Px.s/ds 6 �	T .t/.e1 � e3/
Z1

h1
.eT1 � e

T
3 /	.t/ (13)

�

Z t

t�h1

xT .s/Z3x.s/ds 6 �	T .t/e7
Z3

h1
eT7 	.t/ (14)

�

Z 0

�h1

Z t

tC�

PxT .s/R1 Px.s/dsd� 6 �	T .t/.h1e1 � e7/
2R1

h21
.h1e

T
1 � e

T
7 /	.t/ (15)

�ˇ2

Z t�h1

t�d.t/

PxT .s/R2 Px.s/ds 6 �ˇ2	T .t/.e3 � e2/
R2

h12
.eT3 � e

T
2 /	.t/ (16)

Denoting E1 D Œ0 0 0 0 I �, it is easy to see that

2

Z t�h1

t�h2

xT .s/dsE1P P�.t/D 2

"Z t�h1

t�d.t/

xT .s/dsC

Z t�d.t/

t�h2

xT .s/ds

#
E1P P�.t/ (17)

Clearly,

2

Z t�h1

t�d.t/

xT .s/dsE1P P�.t/� 2	
T .t/ ON

Z t�h1

t�d.t/

x.s/ds

6 ˇ1	T .t/.‡T � ON/Z�14 .‡ � ON T /	.t/C

Z t�h1

t�d.t/

xT .s/Z4x.s/ds

(18)

2

Z t�d.t/

t�h2

xT .s/dsE1P P�.t/� 2	
T .t/ OM

Z t�d.t/

t�h2

x.s/ds

6 ˇ2	T .t/.‡T � OM/Z�14 .‡ � OM T /	.t/C

Z t�d.t/

t�h2

xT .s/Z4x.s/ds

(19)
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� 2	T .t/ OH

Z t�h1

t�d.t/

Px.s/ds 6 ˇ1	T .t/ OHZ�12 OHT 	.t/C

Z t�h1

t�d.t/

PxT .s/Z2 Px.s/ds (20)

�2	T .t/ OF

Z t�d.t/

t�h2

Px.s/ds 6 ˇ2	T .t/ OFZ�12 OF T 	.t/C
Z t�d.t/

t�h2

PxT .s/Z2 Px.s/ds (21)

�2	T .t/ OM

Z �d.t/
�h2

Z t�d.t/

tC�

Px.s/dsd� 6 ˇ
2
2

2
	T .t/ OMR�12

OM T 	.t/

C

Z �d.t/
�h2

Z t�d.t/

tC�

PxT .s/R2 Px.s/dsd�

(22)

�2	T .t/ ON

Z �h1
�d.t/

Z t�h1

tC�

Px.s/dsd� 6 ˇ
2
1

2
	T .t/ ONR�12

ON T 	.t/

C

Z �h1
�d.t/

Z t�h1

tC�

PxT .s/R2 Px.s/dsd�

(23)

From (12)–(23), one can obtain

PV .xt /6 	T .t/
d.t/	.t/ (24)

where
d.t/ D
Chˇ2 OMeT2 Cˇ1
ONeT3 isym�

ˇ2
h12
.e3�e2/R2.e

T
3 �e

T
2 /Cˇ1..‡

T � ON/Z�14 .‡ �

ON T /C OHZ�12
OHT /Cˇ2..‡

T � OM/Z�14 .‡� OM T /C OFZ�12
OF T /C

ˇ2
2

2
OMR�12

OM T C
ˇ2
1

2
ONR�12

ON T .

Because its second order derivative with respect to d.t/ is OMR�12
OM T C ONR�12

ON T > 0,
	T .t/
d.t/	.t/ is a convex quadratic function on d.t/. Therefore, 	T .t/
d.t/	.t/ < 0 is
equivalent to


d.t/jd.t/Dh1 < 0, 
d.t/jd.t/Dh2 < 0 (25)

Using Schur complements, (25) is equivalent to (5)–(6). Therefore, if (5)–(6) are satisfied, then
system described by (1)–(2) is asymptotically stable. �

From (11), one can see that �
R �h1
�h2

R t�h1
tC� Px

T .s/R2 Px.s/dsd� is divided into three parts. In what
follows, we use another method to deal with this term. It is clear to see that the following equation
holds

0D 2	T .t/G

"
h12x.t � h1/�

Z t�d.t/

t�h2

x.s/ds �

Z t�h1

t�d.t/

x.s/ds �

Z �h1
�h2

Z t�h1

tC�

Px.s/dsd�

#

Use the following inequality

�2	T .t/G

Z �h1
�h2

Z t�h1

tC�

Px.s/dsd� 6 h
2
12

2
	T .t/GR�12 GT 	.t/

C

Z �h1
�h2

Z t�h1

tC�

PxT .s/R2 Px.s/dsd�

and then �
R �h1
�h2

R t�h1
tC� Px

T .s/R2 Px.s/dsd� is eliminated from the derivative of the
Lyapunov–Krasovskii functional. Following the similar line as the proof of Theorem 1, we arrive at
the following result.
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Theorem 2
Given scalars h1, h2, and �, the system described by (1)–(2) is asymptotically stable if there exist
matrices P > 0, Q1 > 0, Q2 > 0, S > 0, Zj > 0, j D 1, � � � , 4, R1 > 0, R2 > 0 and any matrices
Ji , Li , and Gi , i D 1, � � � , 4 with appropriate dimensions such that

Q„1 D

2
6664
Q
 ‡T � OG OL OG

� � Z4
h12

0 0

� � � Z2
h12

0

� � � �2R2
h2
12

3
7775< 0 (26)

Q„2 D

2
6664
Q
 ‡T � OG OJ OG

� � Z4
h12

0 0

� � � Z2
h12

0

� � � �2R2
h2
12

3
7775< 0 (27)

where

Q
D
D
ˆP‰T C OL

�
eT2 � e

T
4

�
C OJ

�
eT3 � e

T
2

�
C h12 OGe

T
3

E
sym

� Œe4 e6�Q2 Œe4 e6�
T C Œe3 e5� .Q2 �Q1/ Œe3 e5�

T

C Œe1 Ac �Q1 Œe1 Ac �
T � .e1 � e3/

Z1

h1

�
eT1 � e

T
3

�

� .h1e1 � e7/
2R1

h21

�
h1e

T
1 � e

T
7

�
CATc YAc Cƒ

OG D
�
GT1 GT2 GT3 GT4 0 0 0

�T
OLD

�
LT1 LT2 LT3 LT4 0 0 0

�T
OJ D

�
J T1 J T2 J T3 J T4 0 0 0

�T
and the other symbols are the same as those in Theorem 1.

Remark 1
To estimate bounds of �

R t�h1
t�h2

PxT .s/Z2 Px.s/ds and �
R t�h1
t�h2

xT .s/Z4x.s/ds in (12), Jensen

inequality was used in [25]. However, the method in [25] enlarges �d.t/�h1
h2�d.t/

as �d.t/�h1
h12

, which
may introduce some conservatism as reported in [10]. Therefore, the free-weighting matrices
method and the property of quadratic convex function are used to cope with these terms in this
paper. While the other terms in (12) such as �

R t
t�h1

PxT .s/Z1 Px.s/ds, �
R t
t�h1

xT .s/Z3x.s/ds and

�
R 0
�h1

R t
tC� Px

T .s/R1 Px.s/dsd� are dealt with Jensen inequality. This is because such terms only
involve information about the lower bound of time-varying delay d.t/ for such terms Jensen inequal-
ity method gives the same level performance as free-weighting matrices method but with a small
number of decision variables.

Based on the Lyapunov–Krasovskii functional (4), two delay-dependent stability criteria
are obtained in Theorems 1 and 2. Compared with Lyapunov–Krasovskii functional (3),
Lyapunov–Krasovskii functional (4) uses information about the lower bound of time-varying delay
d.t/ more sufficiently. In the following, we will prove that employing (4) one can derive a less
conservative result than using (3). To show this, similar to the proof of Theorem 1, we have the
following result by Lyapunov–Krasovskii functional (3).
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Theorem 3
Given scalars h1, h2, and �, the system described by (1)–(2) is asymptotically stable is asymptoti-
cally stable if there exist matrices NP > 0, NQ1 > 0, NQ2 > 0, NS > 0, NZj > 0, j D 1, � � � , 4, NR1 > 0,
NR2 > 0 and any matrices NHi , NFi , NMi , and NNi , i D 1, � � � , 4 with appropriate dimensions such that

N„1 D

2
6664
N‚ N‡T � NM NF NM

� � Z4
h12

0 0

� � � Z2
h12

0

� � � �2R2
h2
12

3
7775< 0 (28)

N„2 D

2
6664
N
C hh12 NNe2isym N‡T � NN NH NN

� � Z4
h12

0 0

� � � Z2
h12

0

� � � �2R2
h2
12

3
7775< 0 (29)

where

N‚D N
C
˝
h12 NMeT2

˛
sym
� .e3 � e2/ NR2

�
eT3 � e

T
2

�
N
D

˝
ˆ NP‰T C NF

�
eT2 � e

T
4

�
C NH

�
eT3 � e

T
2

�˛
sym
CATc

NY Ac C Nƒ

� Œe4 e6� NQ2 Œe4 e6�
T C Œe3 e5�

�
NQ2 � NQ1

�
Œe3 e5�

T

C Œe1 Ac � NQ1 Œe1 Ac �
T � .e1 � e3/

NZ1C h12 NR2

h1

�
eT1 � e

T
3

�
� .h1e1 � e7/

2 NR1

h21

�
h1e

T
1 � e

T
7

�

NƒD diag

´
h1 NZ3C h12 NZ4, � .1��/ NS , NS , 0, 0, 0, �

NZ3

h1

μ

NY D h1 NZ1C
h21
2
NR1C h12 NZ2C hs NR2

N‡ D
�
NP T15AC

NP T45
NP T15A1 �

NP T45C
NP55 � NP55 NP

T
25
NP T35 0

�
NN D

�
NN T
1
NN T
2
NN T
3
NN T
4 0 0 0

�T
NM D

�
NM T
1
NM T
2
NM T
3
NM T
4 0 0 0

�T
NF D

�
NF T1
NF T2
NF T3
NF T4 0 0 0

�T
NH D

�
NHT
1
NHT
2
NHT
3
NHT
4 0 0 0

�T
and the other symbols are same as those in Theorem 1.

The relationship between Theorems 1 and 3 is established as the following theorem.

Theorem 4
Consider the system described by (1)–(2). Given scalars h1, h2, and �, if there exist matrices NP > 0,
NQ1 > 0, NQ2 > 0, NS > 0, NZj > 0, j D 1, � � � , 4, NR1 > 0, NR2 > 0 and any matrices NHi , NFi , NMi

and NNi , i D 1, � � � , 4 with appropriate dimensions such that (28)–(29) hold, then P D NP > 0,

Q1 D NQ1Cdiag¹h12 NZ4, h12 NZ2C
h2
12

2
NR2º> 0,Q2 D NQ2 > 0, S D NS > 0, Z1 D NZ1Ch12 NR2 > 0,

Zj D NZj > 0, j D 2, � � � , 4, R1 D NR1 > 0, R2 D NR2 > 0, Hi D NHi , Fi D NFi , Mi D NMi and
Ni D NNi , i D 1, � � � , 4 are feasible solutions to (5)–(6).
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Proof
Suppose matrices NP > 0, NQ1 > 0, NQ2 > 0, NS > 0, NZj > 0, j D 1, � � � , 4, NR1 > 0,
NR2 > 0, NHi , NFi , NMi , and NNi , i D 1, � � � , 4 are feasible solutions to (28)–(29). Define P D NP ,

Q1 D NQ1 C diag¹h12 NZ4, h12 NZ2 C
h2
12

2
NR2º, Q2 D NQ2, S D NS , Z1 D NZ1 C h12 NR2, Zj D NZj ,

j D 2, � � � , 4, R1 D NR1, R2 D NR2, Hi D NHi , Fi D NFi , Mi D NMi and Ni D NNi , i D 1, � � � , 4. Sub-

stitute NP D P , NQ1 DQ1 � diag¹h12Z4, h12Z2 C
h2
12

2
R2º, NQ2 DQ2, NS D S , NZ1 D Z1 � h12R2,

NZj D Zj , j D 2, � � � , 4, NR1 D R1, NR2 D R2, NHi D Hi , NFi D Fi , NMi D Mi and NNi D Ni ,
i D 1, � � � , 4 into N„1 and N„2, and „1 and „2 will be obtained, respectively. Because N„1 < 0 and
N„2 < 0, then„1 < 0 and„2 < 0, that is, (5)–(6) hold. Therefore, P ,Q1,Q2, S , Zj , j D 1, � � � , 4,
R1, R2, Hi , Fi , Mi , and Ni , i D 1, � � � , 4 are feasible solutions to (5)–(6). This completes
the proof. �

Remark 2
From Theorem 4, it is clear that if there is a feasible solution to (28)–(29), then there must exist
a feasible solution to (5)–(6), but not vice versa. In the next section, two numerical examples are
given to confirm that Theorem 1 is less conservative than Theorem 3.

Remark 3
If choosing Lyapunov–Krasovskii functional (3) and following the similar line as Theorem 2, a cor-
responding result can be obtained. Using the similar method as in Theorem 4, it can be proved that
Theorem 2 is less conservative than this corresponding result.

3. NUMERICAL EXAMPLES

In this section, two numerical examples are given to illustrate the effectiveness of the proposed
method, that is, the method in this paper can yield less conservative results than some existing ones.

Example 1
Consider the following system [7] with

AD

�
�0.5 �2
1 �1

	
, A1 D

�
�0.5 �1
0 0.6

	

For various �, the maximum upper bounds of delay (MUBDs) for given lower bounds compared
with those in [10,21,25] are listed in Table I. It is easy to see that the MUBDs obtained in this paper
are much larger than those in [10, 21, 25]. From Table I, it also can be seen that Theorem 1 yields
larger MUBDs than Theorem 3, which illustrates that Lyapunov–Krasovskii functional proposed in
this paper can lead to less conservative results than that in [25]. From Table I, one can also see that
Theorems 1 and 2 are complementary to each other. For example, when � D 0.15 and h1 D 0.5,
Theorem 1 gives a larger MUBD than Theorem 2, while Theorem 2 gives a larger MUBD than
Theorem 1 for �D 0.3 and h1 D 0.5.

Example 2
Consider the following system with

AD

�
0 1

�2 0.1

	
, A1 D

�
0 0

1 0

	
.

Given different lower bounds, our objective is to calculate MUBDs, which keep the aforemen-
tioned system asymptotically stable. Table II lists the results for various � comparing those obtained
in [10,25]. It can be seen that the results obtained in this paper are better than those in [10,25]. From
Table II, we also can see that Theorem 1 is less conservative than Theorem 3, and Theorems 1 and
2 are complementary to each other.
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Table I. Maximum upper bounds of delay for given h1 and different � for Example 1.

h1 Methods �D 0.15 �D 0.3 �D 0.45

0.5 [21] (N D 1) 1.4670 1.2874 1.1477
[21] (N D 2) 1.4742 1.2889 1.1477
[10] 1.8679 1.5746 1.3140
[25] 1.9566 1.7129 1.4775
Theorem 3 2.1300 1.8240 1.5360
Theorem 2 2.1835 1.9108 1.5505
Theorem 1 2.2173 1.8966 1.5447

0.8 [21] (N D 1) 1.4694 1.2882 1.1698
[21] (N D 2) 1.4799 1.2901 1.1836
[10] 1.9709 1.5978 1.3237
[25] 2.2138 1.9001 1.6028
Theorem 3 2.3200 2.0480 1.6670
Theorem 2 2.4614 2.1571 1.6831
Theorem 1 2.4753 2.1567 1.6812

1.1 [21] (N D 1) 1.4758 1.3108 1.3108
[21] (N D 2) 1.4941 1.3222 1.3222
[10] 1.9631 1.4598 1.3842
[25] 2.4102 2.0136 1.6590
Theorem 3 2.6150 2.3280 1.7790
Theorem 2 2.7033 2.3797 1.7823
Theorem 1 2.7229 2.3913 1.7831

Table II. Maximum upper bounds of delay for given h1 and different � for Example 2.

h1 Methods �D 0.1 �D 0.3 �D 0.5

0.6 [10] — — —
[25] 1.1632 1.1632 1.1632
Theorem 3 1.3630 1.3630 1.3630
Theorem 2 1.4810 1.4800 1.4800
Theorem 1 1.4473 1.4473 1.4473

0.8 [10] — — —
[25] 1.3143 1.3143 1.3143
Theorem 3 1.4710 1.4710 1.4710
Theorem 2 1.5884 1.5827 1.5805
Theorem 1 1.5845 1.5783 1.5750

1.0 [10] — — —
[25] 1.4243 1.4243 1.4243
Theorem 3 1.5190 1.5150 1.5130
Theorem 2 1.6149 1.6144 1.6144
Theorem 1 1.6154 1.6130 1.6118

4. CONCLUSION

The problem of asymptotic stability for linear systems with interval time-varying delays has been
investigated. A new type of Lyapunov–Krasovskii functional has been introduced, and it is proved
that this Lyapunov–Krasovskii functional can yield less conservative results. Two complementary
stability criteria have been obtained using two different methods to estimate the derivative of the
Lyapunov functional. Two numerical examples have illustrated that results obtained in this paper
are less conservative than some existing ones.
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