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Abstract: Analysis and design techniques for cooperative flocking
of nonholonomic multi-robot systems with connectivity mainte-
nance on directed graphs are presented. First, a set of bounded
and smoothly distributed control protocols are devised via carefully
designing a class of bounded artificial potential fields (APF) which
could guarantee the connectivity maintenance, collision avoidance
and distance stabilization simultaneously during the system evolu-
tion. The connectivity of the underlying network can be preserved,
and the desired stable flocking behavior can be achieved pro-
vided that the initial communication topology is strongly connected
rather than undirected or balanced, which relaxes the constraints
for group topology and extends the previous work to more general-
ized directed graphs. Furthermore, the proposed control algorithm
is extended to solve the flocking problem with a virtual leader. In
this case, it is shown that all robots can asymptotically move with
the desired velocity and orientation even if there is only one in-
formed robot in the team. Finally, nontrivial simulations and exper-
iments are conducted to verify the effectiveness of the proposed
algorithm.
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1. Introduction

In recent years distributed flocking of autonomous agents
has received considerable attention to solve a wide varie-
ty of spatially distributed tasks such as formation, surveil-
lance, reconnaissance [1-10]. Reynolds proposed a com-
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puter animation model which consists of three heuristic
rules of separation, cohesion and alignment [2]. A simi-
lar model was proposed by Vicsek et a. in [3]. Under the
alignment rule, the synchronization of the headings of all
agents is observed. Stimulated by [2,3], many flocking al-
gorithms were proposed by integrating vel ocity consensus
protocols with potential-based gradient control techniques
[4-12].

It is well known that the coordination and cooperation
among agents strongly rely on network connectivity. In
many previous works, the underlying network is often as-
sumed to be connected frequently enough during the sys-
tem evolutionto ensurereliable and efficient network-wide
information exchange. However, in practice, dueto limited
sensing and communication capabilities of agents, for an
arbitrarily given set of initial states, it is difficult or even
impossible to satisfy and verify the connectivity assump-
tion, which may result in failure of achieving the group
objective. Moreover, it was also demonstrated in [13] that
the network connectivity fundamentally impacts the con-
vergence rate, the time-delay stability, and the robustness
of consensus.

Motivated by the practical need to maintain net-
work connectivity, connectivity-preserving flocking of net-
worked multi-agent systems is rapidly becoming a hot re-
search topic, and various strategies have been developed
including both centralized [14,15] and decentralized ap-
proaches[16—28], which can be divided into three main ca-
tegories. geometrical constraint technique, spectral graph
theory method, and artificial potential field method. The
geometrical constraint technique first appeared in [29],
which was then extended to the second-order system
[30]. Global connectivity can be achieved through keep-
ing the geometric connectivity robustness of the robot net-
worksaboveacertain threshold. A circum center algorithm
was proposed to avoid the loss of existing connections in
[31]. For the spectral graph theory method, the connecti-
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vity praoblem can befurther divided into two branches. One
is to maximize the algebraic connectivity of the graph
Laplacian matrix via nonconvex optimization based on
subgradient or semidefinite programming (SDP) to guar-
antee connectivity [32]. The other isto maintain connectiv-
ity via energy functions combined with distributed eigen-
value estimators [33]. The artificial potential field (APF)
method enables the system to convergeto the desired con-
figuration while preserving connectivity via superposition
of the attractive and repulsive forces. The most practical
way of this method is to assign each communication link
an appropriate weight that is characterized as the spring
force, which reaches the infinity whenever the communi-
cation link tends to break. Other solution techniques in-
clude hybrid control 1aws adopting market-based auctions
with gossip agorithmsfor connectivity-preservinglink ad-
ditions and deletions [34,35], and topology control algo-
rithmsin Ad hoc senor networks [36], which, however, fo-
cuses more on the power consumption and routing problem
than the actuation and control.

To the best of our knowledge, most of the aforemen-
tioned a gorithms share the following common drawbacks.

(i) Most of the existing works on connectivity-
preserving flocking problems focus on agents with purely
linear integrator-type dynamics, in which it is assumed
that the agent has no nonlinear kinematics or the dynam-
ics can befully linearized. However, mobile agents may be
governed by more complicated intrinsic nonlinear dyna-
micsin real systems[37-40]. Specifically, for industrial or
military applications, when dealing with coordination and
cooperation of nonholonomic wheeled mobile robots or
nonholonomic robotic manipulators, the essentially non-
linear dynamics must be explicitly taken into account.

(ii) A common problem of the APF approach and the
spectral graph approach is the use of unbounded poten-
tia fields to force the agents to shrink the communication
links whenever they tend to leave the sensing or commu-
nication range between each other. The algorithms therein
cannot guarantee connectivity maintenance whenever up-
per boundson the actuation areimposed. In practical appli-
cations, however, unbounded input is impossible because
real mobile agents have limited actuation capabilities, e.g.,
the motor cannot generate an infinitely large torque to the
robots. Although in [41,42], bounded APFs are carefully
designed to produce the bounded control inputs, the de-
sired task can only be achieved for linear multi-agent sys-
tems, which limitsitsusein rea applications.

(i) All of the aforementioned results are restricted to
undirected networks rather than directed networks. How-
ever, in many practical applications, it is natura to
model the interaction topology of the heterogeneous

mobile agents as a digraph for their different sens-
ing/communication capabilities, which results in unidirec-
tional information flow and asymmetric neighboring rela-
tionship between the interconnected agents. Moreover, the
solutions for the undirected graphs can not be used for di-
graphs due to the symmetry-breaking properties, as they
heavily rely on the ability of the agents to backtrack on a
traveled path.

To overcome these drawbacks, the focus of this paper is
to consider distributed flocking of multiplewheeled mobile
robots with connectivity maintenance and bounded con-
trol inputs on directed graphs. The main contribution is
to devise a set of bounded and smoothly distributed con-
trol protocols for agents subjected to nonhonolomic con-
straints. Particularly, a novel bounded and smooth APF is
carefully constructed by integrating connectivity mainte-
nance, collision avoidance and obstacle avoidance, simul-
taneously. Our proposed time-varying smooth controller is
able to overcome the drawback of chattering by the high
frequency of switching typically in discontinuous time-
variant control signals in [42]. Moreover, rather than re-
quiring the communication topology to be strongly con-
nected and balanced [7, 22], the convergence of the group
flocking behavior can still be guaranteed even if the un-
derlying network is only strongly connected under the pro-
posed theoretic framework, which is suitable for more gen-
eral directed communication topology in real applications.

Theremainder of the paper is organized asfollows: Sec-
tion 2 provides the background and the problem formula-
tion. Section 3 presents the bounded flocking control laws
with connectivity maintenance for nonholonomic mobile
robots. The stability analysis of flocking for the overall
closed-loop system is given in Section 4. Nontrivial simu-
lations and experiments are performed in Section 5. Fi-
nally, concluding remarks and future directions are given
in Section 6.

2. Preliminaries
2.1 Algebraic graph theory

Some of the main notions in the algebraic graph theory
which are used in this paper are summarized [43]. Given N
mobile robots, the communication topology can be mod-
eled as aweighted directed graph G = {V, E}, where V
is the finite nonempty set of al robots; £ C V x V' is
the set of communication links among all robots. An edge
(4,4) is graphically denoted by an arrow with head node
and tail node j, which implies the information flows from
node j to node . Without loss of generality, self-edges
(1,1) are not allowed unless otherwise indicated. Node j is
caled aneighbor of node if (i, j) € E. The set of neigh-
bors of node i is denoted as N; = {j|(i,7) € E}. Define
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the proximity-limited communication by the weighted ad-
jacency matrix A € RV*N with the element a;; > 0 if
jéN;. _
Define the in-degree matrix of the graph as D™ =
N

diag{di"} with di* = ) a;; as the diagona ele-
j=1
ments. The Laplacian matrix of G is then givenby L =
D™ — A whichis positive and semi-definite for undirected
graphs. L1y = 0, where 1 is the N-dimensional co-
lumn vector of all ones. Accordingly, define the out-degree
N

of node i as do" = Z a;; and the out-degree matrix as
j=1

D,,; = diag{d?"*}. Thenode: isbalancedif itsin-degree

N N
equals its out-degree, i.e, Y aji = »_a;;. A directed
— —
graphisbalanced if all of ité nodesare ijal anced. Then, for
an undirected graph, all undirected graphs are balanced.

In a directed graph, a sequence of successive edges in
the form {(¢,1), (I,m), ..., (k, )} is adirected path from
nodei to node 5. A digraphis said to have a spanning tree,
if there is a node r (called the root) from which there is
a directed path to any other node in the graph. And a di-
graphissaid to be strongly connected, if thereis adirected
path from node 7 to node j for al distinct nodesi and j. In
particular, N(L) = span{1y} if and only if the graph
contains a spanning tree, where N(-) is the kernel space,
span{-} denotes the spanning space.

Lemma 1 [44] Let the directed graph G be strongly
connected. Then there exists a positive vector y > 0,
which is the |eft eigenvector of L(G) associated with the
eigenvalue A = 0,i.e, L(G)1y =0andyT1y = 1.

2.2 Problem statement

Consider a group of N wheeled mobile robots moving on
the Euclidean plane with the dynamics described by the
following nonholonomic differential equations

T; = v; cosb;
yi =v; sin 07,

i = w; 1)
ﬁi:ai
i=1,2,...,N

wherer; = (z;,y;)T € R? isthe position vector of robot
i, v; € R? isthe linear velocity of agent i, §; € R is
the orientation of agent ¢, and a;, w; are linear accelera-
tion and angular velocity vectors respectively, which are
also control inputs acting on agent 4. Furthermore, de-
noter = (ri,...,73) v = (vf,...,vi)T and 0 =
(01,...,0Nn)T asthe stack position, velocity and orienta-
tion vectors of the system, respectively. Let r;; = r; — 1}

be the relative position vector between robots < and ;.

The control objective here is to derive a set of bounded
distributed controllersusing only local information to steer
all the robots with nonhol onomic kinematics (1) to achieve
velocity consensus, collision avoidance with each other,
and finally move coherently in a common orientation,
while guaranteeing that the underlying graph is strongly
connected as the system evolves, provided that the given
graphisinitialy strongly connected but not balanced.

3. Control development
3.1 Flockingwithout virtual leader

Lemma 2 [45] Suppose that the eigenvalues of sym-
metric matrices A, B € RV*V satisfy \j(A) < --- <
An(A)and A (B) < --- < An(B). Then the following
inequality holds:

Xitj—1(A+ B) = N(A) + )\ (B) 2

wherei +j < N+ 1,1<4,j < N.
Lemma3 Supposethat the directed graph is strongly
connected. Define

P = diag{p;} € RV*¥ 3
Q= PL+L"P

where P = [p1,p2, ..., pn] T isthe positive left eigenvec-
tor of L asdefinedinLemmal. Then P > 0,Q > 0.
Proof Itisstraightforward to begin with

N N
CCTPLCC = Zpll’l Zaij(xi — I’j).
i=1 i=1

N N
Since L™p = 0impliesp; Y " a;; = » _pja i, we have
j=1 j=1

N N
> piwi Y ai(wi - xj) =
i=1 j=1

N N N

Z%Q ijaji_ Zpi Zaijxixj =
J

i=1 j=1 i=1 j=1
N N

N N
2 —
E g E Piaij*E E PiGijTiT; =
j=1

i=1 i=1 j=1

N N
Zp,‘ Z aijxj(xj - (L‘Z)
i=1 =1
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Then it follows that

2TQr =22"PLx =
N N
2 Zplml Z CLij (Iz — I’j) =
i=1 j=1
N N
> piwi Y ai(zi - x)+
i=1 j=1
N N
> piwg Yy aij(z; — ;) =
i=1 j=1

N N
Zpizaij(xi —z;)°>0
=1 j=1

O

Lemma4 Let the digraph be strongly connected, and
Q isdefinedin (3), then N(Q) = N(L) = span{1x}.

Proof First, it is obvious that N(L) C N(Q) ac-
cording to (3). Since the directed graph is strongly con-
nected, N(L) = span{1y},span{ly} C N(Q). There-
fore, Q1 = 0 and Q is a vaid symmetric Laplacian
matrix of an augmented graph G, which has the same
node set as graph G, and the weight of edge (i,7) is
ai; = piaij + pjaj. 1t is obvious that G is undirected
and hence balanced. We hereafter call G as the weighted
mirror graph of the original digraph G.

Next, we need to show that therank of Q is N —1. Since
p; > 0, itisclear thatif a;; > 0, thena;; > 0. Strong con-
nectedness of graph G implies the strong connectedness of
the corresponding weighted mirror graph G, thus we have

N(Q) =span{ly}and N(Q) = N(L). O
N

Let e € (0, R;) be a small hysteresis constant,
j=1

where R; is the communicationradius of agent 5. Link ad-
ditions and deletions are regulated by the following rules:

(i) Initid links are generated by FE(0) =
{(Z,])H‘T”(O)H < Rj — 60}, where0 < g9 < e3.

(i) If (i,5) ¢ B(t™) A|lrij(8)]] < Rj — £, then (i, j)
isanew link being added to E(t).

(iii) If (i,5) € E(t™) Allryj(8)]| > Rj, then (i,5) ¢
E(t).

t~ refersto the time instant before topology changes; A
is the boolean AND operation.

In order to realize the desired stable flocking behavior,
the control protocols should contain two components. One
isresponsiblefor synchronizing the headingsand the linear
velocities of al robots, and the other one aims at steering
them to move cohesively without collisions while guaran-
teeing strong connectedness of the entire system as time
evolves. For this end, the explicitly distributed flocking

control protocol for each robot i is designed as follows:

a; = — Z ai; ((Vy, Vi, (cos;,sin0;))—

JEN;
> aij(v; —v))

JEN;

(Vr,Vj, (cos B, sin Oj)T>)

1
o5 VrVi—k Z aij(vi — v;)
JEN;

Wi = — Z aij((Vy, Vi, (—sin6;, cos 6;)T)—

JEN;
> aii(0:—0;)

JEN;

(V2 Vi, (—sinb;, cos6;)))

k Z aij(Qi — 9])

JEN;

©)
where & > 0 is the contral gain; (-) denotes the in-
ner product of the vectors; | - | is defined componenwise;
V; = ) Vj is the potential defined as the sum of all

=~

artifici z]ale potentials associated with each of its neighbors;
(V. Vi, (cos 0;,sin0;) ") and (V. Vi, (— sin6;, cos 6;) ")
denote the projection of V., V; onto the directions aligned
with and perpendicular to the translational velocity of each
robot i, respectively.

Remark 1 Note that in (4), the first two terms of a;
are responsible for relative distance stabilization, collision
avoidance as well as connectivity maintenance simultane-
ously, while the last term of a; is responsible for reach-
ing velocity consensusamong all robots. Similarly, thefirst
two terms of w; in (4) aim at synchronizing the headings
of al neighboring robots. The combination of a; and w;
constitutes the flocking control input for each robot ¢, and
the boundedness of (4) is strongly dependent on the de-
sign of the finite potentials V;;(Vj € N;), which will be
detailed |ater.

To enable the overall system to achieve the desired
stable flocking motion using only bounded control inputs,
Vij(|lri;11) should be carefully designed to be a kind
of bounded and nonnegative artificial potential with re-
spect to r;; while integrating connectivity maintenance
and collision avoidance, such that

(i) Vi; (lr451) is continuously differentiable for ||r;;|| €
(0, Rj);

(ii) Vi (||r4511) is monotonically decreasing for ||r;|| €
(0,d) and monotonically increasing for ||r;|| € (d, R;),
where0 < g1 < d < Rj — €2;

(“I) ‘/U(0> = c1 + Hpax, ‘/;](RJ) = c2 + Hpyax,
wherecy, ca > 0, Hpax = v(0)T Pv(0) +0(0)T PO(0) +
N(N — 1)Viyax, Vinax = max{V(e1), V(Rmax — €2)},
Rmax = max{R;} and e, = Z.Ig_lég{\lnj(())ll-

Condition (i) aims at produbi ng a smooth controller for
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each robot; condition (ii) illustrates that the potential V;;
provides an attractive or repulsive force between agents
and j when their distance tends to R; or zero; condition
(i) states that the potential will be sufficiently large when
the distance between them reaches R ; or zero, which gua-
rantees the connectivity maintenance and collision avoi-
dance. One candidate exampleis given as below:

(I[rijll = d)*(Ry = |lr4511)

V(llri;l]) = +
! HT__‘HdQ(Rj—H?"z‘jH)
" C1 +Hmax
rizl|(||ri;]] — d)? ©)
|74 |[(R; — d)*°
(R — lrizl]) + T~

Note that in [18,20,23], two kinds of specific potential
functions are introduced and tend to the infinity when the
relative distance between two agents ¢ and j tends to R,
which may not be practical since it will require infinitely
large (unbounded) control effort. Let f,.x be the magni-
tude of the maximum potential force, then we have thefol-
lowing theorem.

Theorem 1 Consider a system of N mobile robots
with nonholonomic dynamics (1), each steered by protocol
(4). Suppose that the initial energy H (0) is finite and the
initial communication network G(0) is strongly connected
but not balanced, and

22(Q(0)) > 2fmax N*(N — 1) /k

whereQ = PL + LT P.

Then the network will be strongly connected for al
time, all the agents asymptotically converge to the same
velocity, collisions between agents are avoided and all the
interagent distances are stabilized.

Proof Consider the positive semi-definite function as

N
H=p 3 Vii(lryll) + " Pv + 6" P6.
i=1  jEN;

Assume that G(t) switches at time ¢, (k = 1,2,...)
and keeps fixed over each timeinterval [t 1, t)). Specifi-
cally, H(0) isfinite, then take the time derivative of H ()
on [0, t1), whichyields

N
H=> vp; > V,Viy+20"P
i=1 JEN; ()
(—kLO — L(VV)_||LO||)+
1
20T P (—k:Lv — L(VV),||Lv|| - Evv) =
k8" (PL+ L"P)0 — 20" PL(VV),||L6||—
kv"(PL + LT P)v — 20" PL(VV)||Lv|| (6)

where VV = [V, V1, Vo, Vo, ..., Ve V|t (VV) L =
(Ve Vi) iy ooy (Ve V)L (VV) = (Ve V)
(Ve Vaults (Ve Vi) and (V,, Vi) are the compo-
nents of V., V; when expressed in a body-fixed coordinate
frame, aligned with and perpendicular to the translational
velocity of rabot ¢, respectively.

Further, decompose v and 6 as v = vV & v~ and
6 = 01~ ¢ 1~ . Superscripts 1,y and 14 denote the com-
ponents along the direction of the vector of al onesand its
orthogonal. Then, (6) becomes

H=—k6"(PL+L"P)0 —20"PL(VV)_||LO|—
kv"(PL+ LT P)v — 20" PL(VV)||Lv|| <
A2 (Q)IIB™ |2 + 21677 | L6 | -
EX(Q)I[0* |+ 2l ™ | [ L0 | <
~(kA2(Q) — 2 N* (N = 1))|07 ¥~

(FA2(Q) = 2fmax N2(N — 1)[['¥ 2. (D)

According to the initid condition A2(Q(0)) >
2 fmaxN2(N — 1)/k, we have

H(t) <0, VYte[0,t). (8)

Therefore, H(t) will be decreasing in [0,¢1), and from
(5), one has Vi;(R;) > Hmax > H(0) (V(i,j) €
E). Therefore, for each robot i, no edge-distance will tend
to R; (V5 € N;). Hence, new edges must be added into
the network at the switching time ¢; and the strong con-
nectedness of G(t) is preserved for ¢ € [0,¢1). Without
loss of generality, assume that there are N1 new links be-
ing added to the communication network at time ¢,. Ac-
cording to the fact that G(¢) is strongly connected over
t € [0,t1), one has that G(t) contains at least N edges,
thus it follows 0 < Ny < Npax = N(N — 2), and
H(t;) < H(0) + NmaxV (|| Rmax — €2||). Furthermore,
according to the fact that new edges must be added into
the network at the switching time and applying Lemma 2
to the undirected weighted mirror graph G, we have
A2(Q(t1)) = X2(Q(0)). Therefore, for arbitrary k& > 2,
onemay get A\2(Q(tk—1)) > A2(Q(0)) by induction. Fol-
lowing the same analysis and taking the time derivative of
H(t)in[tg—1,tx), wecan get

H(t) < —(kA2(Q(ti—1)) — 2 fmax N2(N —1))||0*| >~
(EA2(Q(tr-1)) — 2fmax N2(N — 1))[[0'¥ |2 (9)
which implies

H(t)gH(tk,l) < Hpax, Vte [tk,htk);kil,l...

(10)
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Thus, no edge-distance will be tend to R; (Vj € N;),
which implies that no edges will be lost at time ¢;. Since
G(0) is strongly connected and no edgesin E(0) will be
lost. G(t) will be strongly connected for al time. Assume
that there are N, new links being added to the interaction
network at time ¢;. Clearly, 0 < N < Npax, then we
have

H(ty) < HO)+ (N1 +Na+...4+ Ni) < Hpax. (12)

Since there are at most N,,.x hew edges that can be
added to G(t), one has k < Npax (V¢ > 0). There-
fore, the number of switching times & is finite, which
implies that the interaction topology G(t) eventually be-
comes fixed. Hence, the rest analysis can be restricted to
[tr, +00). Note that the length of each edge will not be
longer than max{V ~!(Huax)} and not be shorter than
min{V =1 (Hpmax)} during the system evolution. Hence,
thesst 2 = {r € D,6 € RN, v € R
H(7,0,v) < Hpaxt IS a postively invariant set,
where D = {r € R2’|r;; € [min{V " (Huax)},

max{V " (Hmax)}], V(i,7) € E@)} ad 7 =
(Pl iy Py, Ty T, Because G(t) is

strongly connected for al time, ||ri;|] < (N —
1)Rmax, V(i,7) € E(t). Since H(t) < H(0) < Hpax,
then it follows ||v;|| < v2Hmax, |0i| < V2Hmax. There-
fore, {2 is compact. Note that system (1) with control in-
put (2) is an autonomous system, at least in the concerned
timeinterval [tx, oo). Thenthe LaSalle€'sinvariance princi-
ple can be applied to infer that, if the initial conditions of
the system liesin (2 [46], all the trajectories will converge
to the largest invariant set inside the region

S={reD,0cRY vec RN H=0}. (12

From (9), H = 0 if and only if 1% = 0 and v~ = 0,
which implies that v and 6 are pardlel to 1, i€, 6; =
o =0y =0, v1 =--- = vy = v*. Thismeansthat all
the robots asymptotically move with the same vel ocity and

the same orientation. Then we have
wlz...:wN:O’ alz...:aN:O.

Subtituting (4) into (1), then in the steady state, we have

T; = v cosb*, y; =v*sinf* (13)
and
v"'l Vvlj
a=— : =0 14
Vo Vi

wherea = [aT,al,...,a]" € R2V. Equation (14) im-
plies that the multi-robot systems asymptotically converge

to a fixed configuration corresponding to an extremum of
robot’s global potential. However, every point but local
minima is an unstable equilibrium, thus almost every fi-
nal configuration locally minimizes the global potential
>V, Vi; associated with each robot i.

jEN;

’ Finally, suppose that robots 7 and j collide with each
other. However, in view of (11), we have H(t) <
Hyax (Yt > 0), and from (5), we have lim  V;;(0) >

[Im351[—0
H.,,..x, which reaches a confliction. Therefore, collisions
among agents are avoided. O

3.2 Flockingwith avirtual leader

In this section, the problem of flocking control with a vir-
tual leader isinvestigated. Denote r; = [z;, yi]", v; and 6;
are the position, constant velocity and orientation vectors
of thevirtual leader. Thendenote #; = r;,—r;, v; = v; —v;
and 0, = 0; — 0, as the position error, velocity error and
orientation error vectors, respectively. By the definition of
Vij(Iriz 1)), itfollowsthat Vi; ([|ri; ||) = Vi; ([|7451]), where
Ti; = 7;—7;. Here, itisassumed that only asmall fraction
6 € [0,1) of the robots can communicate with the leader
and getsitsinformation. In this case, similar to the design
idea of (4), the explicit form of the tracking control proto-
col for each follower i is specified as follows:

ai = —(Vi, Vi, (cos 0, sin 0,)T)| Y~ aij(vi — ;)| —

1 JEN;
5 Vi Vig ([Fis 1) =k Y aij(vi—v)—hid;
JENL{I} JEN:
wi = —(Vi, Vi, (=sin0;,cos6:) ") > aij (0:—0;)|—
JEN;
k Z CLij (92 — 9]) — hzéz
JEN;
(15)
where V; = Z Vij; | - | is the absolute value operator

JEN;
acting on eacﬁ component of avector; if robot i is thein-
formed robot, i; = 1, otherwise, h; = 0.

Remark 2 Notethat in (15), the first two terms of a;
areresponsible for relative distance stabilization, collision
avoidance as well as connectivity maintenance simultane-
oudly, while the last two terms of a; are responsible for
achieving velocity consensus among all followers and the
virtual leader. Similarly, w; aims at synchronizing the ori-
entations among all followers with the virtual leader. Both
a; and w; constitute the final tracking control inputs for
each follower 1.

Then we have the theoretical result which is stated as
the following theorem.

Theorem 2 Consider a system of N mobile robots
with dynamics (1), each of them is steered by the con-
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trol protocol (15). Suppose that the initia network G(0)
is strongly connected and theinitial energy isfinite. If

2fmaxN(N — 1)

Ao ((kQ + 2PH)(0)) > -

(16)

where H = diag{hi, he,...,hny}. Then G(t) is strongly
connected for al ¢ > 0, al the robots asymptotically con-
verge to the desired velocity and orientation with the vir-
tual leader, while collisions between all robots are avoided.

Proof Consider the following positive semi-definite
Lyapunov function:

N
U=>"p > Villfyll) +8"Po+6"P6 (17)
i=1  jeN;U{l}

whered = [o],..., %] T and@ = [0;,...,05]". Similar
to the proof of Theorem 1, it can be shown that the time
derivativeof U (t) in [tr—1,tk) IS

U =20"P(—kL6O — diag{(V Vi), }|LO| — HO)+

26TP(kLvdiag{(V;iVi) I }Lﬁ%VVH’B)Jr

N
Z{,;fpi Z Vi, Vij <
i= FEN: (HU{l}

—67(kQ + 2PH)6 + 2 funax||6]]|| ||| LO| |~

0" (kQ + 2P H)0 + 2 finax||0][[| PI[[| L?|| <

~(Amin(Z) = 2fmaxN (N = 1))]|0][>~
()‘Imn( ) 2fmatx (N_ 1))H'FJH2 (18)
where & = kQ +2PH, and

(Va, Vi) - 0

diag{(V# Vi) } = . :
0 (VFNVNM

(Vhfﬁh 0

diag{(V#Vi)1} = : :
0 co (Vg f/N)L

Since P H is positively semi-definite, from Lemma 2 and
(16), we can get

Ut)<0, Vtelte1,te); k=12,... (19
which implies
Utr) U(tr-1) < Unax, k=1,2,... (20)

where

e = BUOPO0) # STOPSO)

2 - 1)Vmax-

Therefore, for each robot ¢, no edge distance will tend to
R; (Vj € N;(t)) foral t € [ty—1,tx), whichindicates that
no edgewill belost at time ;. Since G(0) is strongly con-
nected and no edges in E(0) will belost, G(t) is strongly
connected for all t > 0

Similar to the proof of Theorem 1, the set

2 ={2cR*™ 6 c RN e D,|U®,0,7) <U(0)}
(22)
is compact, where Dy = {7 € R2V"|[min{V;; ! (Unmax)},
maX{VJI(Umax)}], V(i,j) € E(t)}.
Then it follows the LaSalle's invariance principle that

al the trgjectories will convergeto the largest invariant set
inside the set

S={oecR*™ §c R, 7cD,|U =0}

which implies o1 = v2 = -+ = oy andf; = - =
Oy = 0 from (18), i.e, vy = --- = vy = v and

01 = o= Oy = Ql. Thisalso implies that in the steady
sate, 1 = - =0y =0, =0andv; = --- = Oy =
v; = 0. From (15), we have
[ Z vf‘lvlj ]
JEN1U{l} )
Z Vi, Vij
V= — jGNzU{l} =0. (23)
Z v,,NVU
L JENNU{I}

Thus, almost every fina configuration locally minimises
each robot’sglobal potential V ;, V. Finally, following the
same procedurein Theorem 1, the collision avoidance be-
tween each pair of robots can be proved. O

4. Simulations and experiments
4.1 Simulation of flocking without virtual leader

In this section, comparative numerical simulations are
performed to verify the advantage of our connectivity-
preserving distributed flocking algorithm with connectivi-
ty maintenance over that without connectivity mainte-
nance. The simulations are performed with five agents
with dynamics (1) moving in the plane. The number of
robots in the group is kept small for clarity of presenta-
tion. It is assumed that the initial time ¢ty = 0 s, the sen-
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sing radii of al the wheeled mobile robots are set to be
Ri =Ry =R, =25m R3 = Rs =3m. Initia pOg-
tions, velocities and headings are randomly set, satisfying
the following conditions:

(i) All the initial positions of the robots are set within
the circle of radius R = 10 m with a randomly gener-
ated weighted adjacency matrix to meet the requirement
that theinitial directed communication network is strongly
connected.

(if) All the initia velocities of the robots are chosen
randomly with magnitudes belonging to the range of [0,
2m/g].

(i) All the initial headings of the robots with arbitrary
directions are chosen within (—, .

Furthermore, the potential function V' is defined in (5)
with the desired distance d = 2 m, and eqg = &5 =
0.2,e; = 0.5. The weights are set as a;; = 1 for dll
(i,7) € E. The control gainis set to & = 10. Through
some simple derivations, we have Viyax = V(Rmax — €2),
then

Hmax < N(N - 1)V(Rmax - 52)+

N Amax (P) max 0;(0)T0;(0)+
1€

N Amasc(P) max 6:(0) 70 (0). (24)

Thuswe can get H . < 748.3. Choose ¢y = ¢ = 50,
we have the explicit form of the potentia function.

([rizll = 2)*(Rj — lIri;1)

= Rl
v 200
[[7ig (Il || = 2)? (25)
(R_7|‘r..|‘)+w
J J 800

Fig. 1 shows the common initial strongly connected but
not balanced communication topology for both algorith-
ms. The robots are denoted as red rectangl es, the unidirect-
ional neighboring relations between the robots are repres-
ented by black solid lines with arrows, and the bidirect-
ional neighboring relations are represented by black solid
lines without arrows. The motion tragjectories of all robots
under the control protocol (4) are depicted in Fig. 2(a) and
Fig. 2(b)att = 20 s andt = 40 s, respectively, fromwhich
it can be seen that al the existing links are kept and the
new links are added to the original network as the system
evolves, then the strong connectedness of the underlying
directed network is preserved. Fig. 2(c) shows that al the
robots eventually achieve the same velocities and orienta-
tions, while achieving collision avoidance with the neigh-
boring robots during the whole control process. The stable
flocking behavior is generated asymptotically.

Fig. 1 Initial configuration of five mobile robots

(c)t=50s

Fig.2 Flocking of five mobile robotswith (4)

Fig. 3(a) and Fig. 3(b) illustrate the synchronization
of the velocities along both = and y axes, and the syn-
chronization of the orientations of the group is shown in
Fig. 3(c), which verifies the theoretical analysis very well.

The simulation results without connectivity preservation
areillustrated in Fig. 4, which shows the typical consecu-
tive video snaps during the whole process of system evo-
lution. It can be concluded that, for some special initial
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states, the flocking algorithm without connectivity mainte-
nance results in the network fragmentation and the robots
finally form different separated subgroupsinstead of form-
ing a cohesive connected flock. The velocities and orienta-
tions of al robots fail to synchronize to a common value
as awhole. On the contrary, the stable group flocking be-
havior could be achieved under control protocal (4) by uti-
lizing the bounded artificial potential functions (5). There-
fore, the conclusion can be safely drawn that the connec-
tivity preservation is indispensable and the potential func-
tionswith connectivity preserving should bewell-designed
to ensure the stability of the whole flock under arbitrary
initial configurations.
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Fig. 3 Velocity and orientation curves of five mobile robots
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Fig. 4 Simulation of flocking of five mobile robots without connec-
tivity maintenance

4.2 Experiment of flocking without virtual leader

In this section, the experimental results are presented to il-
lustrate the effectiveness of the control protocal (4), which
are performed with five differential-drive nonholonomic
wheeled mobile robots that consist of four Pioneer3-AT
robots and a Pioneer3-DX robot. The initial positions are
initialized to ensure that theinitial network is strongly con-
nected. The linear velocities of the robots are randomly
chosen in the range of [0, 2 m/g], and the maximum speed
is 3 m/s. The control period is 7" = 0.5 s and the com-
munication radii are set to Ry = Ry = R4 = 2.5 m,
R3 = R5 = 3m. Thedesired distanceisd = 1 m. More-
over, it is assumed that all the robots are subject to non-
dlipping and pure-rolling constraints and each robot has
access to the information needed via its wireless commu-
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ni cation equipment.

Fig. 5illustratestypical experiment snapshotsduringthe
entire evolution of the proposed flocking protocal (4). The
unidirectional communication links are denoted by the
solid yellow lines with red arrows, and the bidirectional
communication links are denoted by the solid yellow lines
without arrows.

(@)=0s

(d) Final state

Fig.5 Experiment validation of flocking of five mobile robots

Fig. 5(a) shows the initial configuration of the strongly
connected directed but not balanced communication topol -
ogy. Fig. 5(b) and Fig. 5(c) illustrate the consecutive typi-
cal snapshots of the motion evolution processat ¢ = 20 s
and ¢ = 35 s. The final state of the system is shown in
Fig. 5(d). It is obvious that the strongly connectedness of
the underlying time-varying directed network is preserved
during the whole system evolution. All the robots could
successfully obtain the same velocities and orientations as
a cohesive flock without collisions, and the stable desired
flocking motion is finally achieved asymptotically.

4.3 Simulation of flocking with virtual leader

Finally, smulations of flocking with a virtual leader un-
der control protocol (15) are performed with five agents
moving in the Euclidean plane. The communication radii
of al the robots are set as Ry = Rs; = 5 m, and
Ry = R3 = Ry = 3 m, respectively. Once again, the
initial directed network is set to be strongly connected but
not balanced. Initial velocities of the five agents are chosen
randomly from the range of [-3 m/s, 3 m/s]. The desired
velocity and orientation of the virtual leader are chosen as
v = 2m/sand 0, = —m/2, respectively. The values are
setase; = 0.9,69 = 2 = 0.5. It can beeast deduced
that Vipax = V(Rmax — €2) and according to (5), we have

Hmax < N<N - 1>V<Rmax - 82)"‘
N)\max(P) Héa“/}.{ 6?(0)61(0)4_
Nmae(P) max 87 (0)6: (0). (26)

Thusweget Hp,ax < 1990.7, further choosec; = ¢o =
10,d = 2, then the bounded potentia function (5) is se-
lected as follows:

(lrigll = 2)*(R; = llr45l1)

Vii(llrisl]) = +
Al == Tl
* 500
il — 2)*
. 27
oy - Il B2
J * 2000

Fig. 6 shows the whole process of the simulation with a
period of 50 s. Fig. 6(a) depictsthe initial state of the sys-
tem, in which the informed agent is chosen randomly from
the group and marked with a capital letter ‘ L'. Fig. 6(b)
and Fig. 6(c) illustrate the consecutive video snaps at t =
10 s and t = 30 s. It is obvious that the initialy dis-
persed robots tend to form a cohesive flock without violat-
ing the strong connectedness of the network. Thefinal state
isshowninFig. 6 (d), fromwhich it can be seen that the ve-
locities and headings of all robotsfinally become the same
and the stable flocking motion is asymptotically achieved
without collisions.
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(a) Initial state
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(c)=30s

(d) Final state

Fig. 6 Flocking of five mobile robotswith (15)

Fig. 7 demonstrates the tracking results with a virtual
leader qualitatively and quantitatively. Fig. 7(a)—Fig. 7(c)
show the convergence of and the velocity tracking errors
of each robot along the = and y axes orientation tracking
errors, respectively, from which it can be observed that all
the tracking errors asymptotically convergeto zero. There-
fore, al agents eventually reach the desired vel ocity v; and

the desired orientation 6,.
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Fig. 7 Velocity and orientation convergence of five maobile robots

5. Conclusions and future work

In this paper, a set of distributed flocking algorithms
with bounded control inputs has been investigated to en-
able the multi-robot systems with nonhonolomic kinema-
tics. Through devising a new class of bounded artifi-
cial potential functions which nicely integrates the colli-
sion avoidance, inter-distance stabilization and connectiv-
ity maintenance simultaneously, all the existing communi-
cationlinksare preserved, the vel ocities and orientations of
all robots are guaranteed to be synchronized, and collisions
between the robots are avoided. It has been shown that
the proposed algorithm could enable the group of multiple
robots to asymptotically achieve the stable flocking mo-
tion, provided that the initial directed network is strongly
connected but not balanced and the algebraic connectivi-
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ty of its augmented weighted mirror graph is larger than
a threshold. Moreover, the problem of cooperative flock-
ing with a virtual leader has aso been investigated. With
the modified local control protocoals, all the robots could
achieve velocity and orientation synchronization aswell as
collision avoidance even if only one robot has the informa-
tion about the virtual leader. Finally, extensive simulations
and experiments have been performed, which showes the
consistency with the theoretical results.

However, there are some issues that need to be ad-
dressed in the future. First, it will be interesting and chal-
lenging to derive flocking control protocols by using only
position information. Second, it will be also interesting to
extend the proposed bounded flocking control strategiesto
more complex environmental settings with multiple mo-
ving obstacles and more general directed networks.
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