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Abstract: Analysis and design techniques for cooperative flocking
of nonholonomic multi-robot systems with connectivity mainte-
nance on directed graphs are presented. First, a set of bounded
and smoothly distributed control protocols are devised via carefully
designing a class of bounded artificial potential fields (APF) which
could guarantee the connectivity maintenance, collision avoidance
and distance stabilization simultaneously during the system evolu-
tion. The connectivity of the underlying network can be preserved,
and the desired stable flocking behavior can be achieved pro-
vided that the initial communication topology is strongly connected
rather than undirected or balanced, which relaxes the constraints
for group topology and extends the previous work to more general-
ized directed graphs. Furthermore, the proposed control algorithm
is extended to solve the flocking problem with a virtual leader. In
this case, it is shown that all robots can asymptotically move with
the desired velocity and orientation even if there is only one in-
formed robot in the team. Finally, nontrivial simulations and exper-
iments are conducted to verify the effectiveness of the proposed
algorithm.

Keywords: multi-robot system, nonholonomic kinematics, flock-
ing, directed network, connectivity maintenance, bounded artificial
potential field (APF).

DOI: 10.1109/JSEE.2014.00054

1. Introduction

In recent years distributed flocking of autonomous agents
has received considerable attention to solve a wide varie-
ty of spatially distributed tasks such as formation, surveil-
lance, reconnaissance [1–10]. Reynolds proposed a com-
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puter animation model which consists of three heuristic
rules of separation, cohesion and alignment [2]. A simi-
lar model was proposed by Vicsek et al. in [3]. Under the
alignment rule, the synchronization of the headings of all
agents is observed. Stimulated by [2,3], many flocking al-
gorithms were proposed by integrating velocity consensus
protocols with potential-based gradient control techniques
[4–12].

It is well known that the coordination and cooperation
among agents strongly rely on network connectivity. In
many previous works, the underlying network is often as-
sumed to be connected frequently enough during the sys-
tem evolution to ensure reliable and efficient network-wide
information exchange. However, in practice, due to limited
sensing and communication capabilities of agents, for an
arbitrarily given set of initial states, it is difficult or even
impossible to satisfy and verify the connectivity assump-
tion, which may result in failure of achieving the group
objective. Moreover, it was also demonstrated in [13] that
the network connectivity fundamentally impacts the con-
vergence rate, the time-delay stability, and the robustness
of consensus.

Motivated by the practical need to maintain net-
work connectivity, connectivity-preserving flocking of net-
worked multi-agent systems is rapidly becoming a hot re-
search topic, and various strategies have been developed
including both centralized [14,15] and decentralized ap-
proaches [16–28], which can be divided into three main ca-
tegories: geometrical constraint technique, spectral graph
theory method, and artificial potential field method. The
geometrical constraint technique first appeared in [29],
which was then extended to the second-order system
[30]. Global connectivity can be achieved through keep-
ing the geometric connectivity robustness of the robot net-
works above a certain threshold. A circum center algorithm
was proposed to avoid the loss of existing connections in
[31]. For the spectral graph theory method, the connecti-
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vity problem can be further divided into two branches. One
is to maximize the algebraic connectivity of the graph
Laplacian matrix via nonconvex optimization based on
subgradient or semidefinite programming (SDP) to guar-
antee connectivity [32]. The other is to maintain connectiv-
ity via energy functions combined with distributed eigen-
value estimators [33]. The artificial potential field (APF)
method enables the system to converge to the desired con-
figuration while preserving connectivity via superposition
of the attractive and repulsive forces. The most practical
way of this method is to assign each communication link
an appropriate weight that is characterized as the spring
force, which reaches the infinity whenever the communi-
cation link tends to break. Other solution techniques in-
clude hybrid control laws adopting market-based auctions
with gossip algorithms for connectivity-preserving link ad-
ditions and deletions [34,35], and topology control algo-
rithms in Ad hoc senor networks [36], which, however, fo-
cuses more on the power consumption and routing problem
than the actuation and control.

To the best of our knowledge, most of the aforemen-
tioned algorithms share the following common drawbacks.

(i) Most of the existing works on connectivity-
preserving flocking problems focus on agents with purely
linear integrator-type dynamics, in which it is assumed
that the agent has no nonlinear kinematics or the dynam-
ics can be fully linearized. However, mobile agents may be
governed by more complicated intrinsic nonlinear dyna-
mics in real systems [37–40]. Specifically, for industrial or
military applications, when dealing with coordination and
cooperation of nonholonomic wheeled mobile robots or
nonholonomic robotic manipulators, the essentially non-
linear dynamics must be explicitly taken into account.

(ii) A common problem of the APF approach and the
spectral graph approach is the use of unbounded poten-
tial fields to force the agents to shrink the communication
links whenever they tend to leave the sensing or commu-
nication range between each other. The algorithms therein
cannot guarantee connectivity maintenance whenever up-
per bounds on the actuation are imposed. In practical appli-
cations, however, unbounded input is impossible because
real mobile agents have limited actuation capabilities, e.g.,
the motor cannot generate an infinitely large torque to the
robots. Although in [41,42], bounded APFs are carefully
designed to produce the bounded control inputs, the de-
sired task can only be achieved for linear multi-agent sys-
tems, which limits its use in real applications.

(iii) All of the aforementioned results are restricted to
undirected networks rather than directed networks. How-
ever, in many practical applications, it is natural to
model the interaction topology of the heterogeneous

mobile agents as a digraph for their different sens-
ing/communication capabilities, which results in unidirec-
tional information flow and asymmetric neighboring rela-
tionship between the interconnected agents. Moreover, the
solutions for the undirected graphs can not be used for di-
graphs due to the symmetry-breaking properties, as they
heavily rely on the ability of the agents to backtrack on a
traveled path.

To overcome these drawbacks, the focus of this paper is
to consider distributed flocking of multiple wheeled mobile
robots with connectivity maintenance and bounded con-
trol inputs on directed graphs. The main contribution is
to devise a set of bounded and smoothly distributed con-
trol protocols for agents subjected to nonhonolomic con-
straints. Particularly, a novel bounded and smooth APF is
carefully constructed by integrating connectivity mainte-
nance, collision avoidance and obstacle avoidance, simul-
taneously. Our proposed time-varying smooth controller is
able to overcome the drawback of chattering by the high
frequency of switching typically in discontinuous time-
variant control signals in [42]. Moreover, rather than re-
quiring the communication topology to be strongly con-
nected and balanced [7, 22], the convergence of the group
flocking behavior can still be guaranteed even if the un-
derlying network is only strongly connected under the pro-
posed theoretic framework, which is suitable for more gen-
eral directed communication topology in real applications.

The remainder of the paper is organized as follows: Sec-
tion 2 provides the background and the problem formula-
tion. Section 3 presents the bounded flocking control laws
with connectivity maintenance for nonholonomic mobile
robots. The stability analysis of flocking for the overall
closed-loop system is given in Section 4. Nontrivial simu-
lations and experiments are performed in Section 5. Fi-
nally, concluding remarks and future directions are given
in Section 6.

2. Preliminaries

2.1 Algebraic graph theory

Some of the main notions in the algebraic graph theory
which are used in this paper are summarized [43]. Given N

mobile robots, the communication topology can be mod-
eled as a weighted directed graph G = {V, E}, where V

is the finite nonempty set of all robots; E ⊆ V × V is
the set of communication links among all robots. An edge
(i, j) is graphically denoted by an arrow with head node i

and tail node j, which implies the information flows from
node j to node i. Without loss of generality, self-edges
(i, i) are not allowed unless otherwise indicated. Node j is
called a neighbor of node i if (i, j) ∈ E. The set of neigh-
bors of node i is denoted as Ni = {j|(i, j) ∈ E}. Define
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the proximity-limited communication by the weighted ad-
jacency matrix A ∈ RN×N with the element aij > 0 if
j /∈ Ni.

Define the in-degree matrix of the graph as D in =

diag{din
i } with din

i =
N∑

j=1

aij as the diagonal ele-

ments. The Laplacian matrix of G is then given by L =
Din−A which is positive and semi-definite for undirected
graphs. L1N = 0, where 1N is the N -dimensional co-
lumn vector of all ones. Accordingly, define the out-degree

of node i as dout
i =

N∑
j=1

aji and the out-degree matrix as

Dout = diag{dout
i }. The node i is balanced if its in-degree

equals its out-degree, i.e.,
N∑

j=1

aji =
N∑

j=1

aij . A directed

graph is balanced if all of its nodes are balanced. Then, for
an undirected graph, all undirected graphs are balanced.

In a directed graph, a sequence of successive edges in
the form {(i, l), (l, m), . . . , (k, j)} is a directed path from
node i to node j. A digraph is said to have a spanning tree,
if there is a node r (called the root) from which there is
a directed path to any other node in the graph. And a di-
graph is said to be strongly connected, if there is a directed
path from node i to node j for all distinct nodes i and j. In
particular, N(L) = span{1N} if and only if the graph
contains a spanning tree, where N(·) is the kernel space,
span{·} denotes the spanning space.

Lemma 1 [44] Let the directed graph G be strongly
connected. Then there exists a positive vector y > 0,
which is the left eigenvector of L(G) associated with the
eigenvalue λ = 0, i.e., L(G)1N = 0 and yT1N = 1.

2.2 Problem statement

Consider a group of N wheeled mobile robots moving on
the Euclidean plane with the dynamics described by the
following nonholonomic differential equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = ωi

v̇i = ai

i = 1, 2, . . . , N

(1)

where ri = (xi, yi)T ∈ R2 is the position vector of robot
i, vi ∈ R2 is the linear velocity of agent i, θi ∈ R is
the orientation of agent i, and ai, ωi are linear accelera-
tion and angular velocity vectors respectively, which are
also control inputs acting on agent i. Furthermore, de-
note r = (rT

1 , . . . , rT
N )T, v = (vT

1 , . . . ,vT
N )T and θ =

(θ1, . . . , θN )T as the stack position, velocity and orienta-
tion vectors of the system, respectively. Let rij = ri − rj

be the relative position vector between robots i and j.
The control objective here is to derive a set of bounded

distributed controllers using only local information to steer
all the robots with nonholonomic kinematics (1) to achieve
velocity consensus, collision avoidance with each other,
and finally move coherently in a common orientation,
while guaranteeing that the underlying graph is strongly
connected as the system evolves, provided that the given
graph is initially strongly connected but not balanced.

3. Control development

3.1 Flocking without virtual leader

Lemma 2 [45] Suppose that the eigenvalues of sym-
metric matrices A, B ∈ RN×N satisfy λ1(A) � · · · �
λN (A) and λ1(B) � · · · � λN (B). Then the following
inequality holds:

λi+j−1(A + B) � λi(A) + λj(B) (2)

where i + j � N + 1, 1 � i, j � N .
Lemma 3 Suppose that the directed graph is strongly

connected. Define

{
P = diag{pi} ∈ RN×N

Q = PL + LTP
(3)

where P = [p1, p2, . . . , pN ]T is the positive left eigenvec-
tor of L as defined in Lemma 1. Then P > 0, Q � 0.

Proof It is straightforward to begin with

xTPLx =
N∑

i=1

pixi

N∑
i=1

aij(xi − xj).

Since LTp = 0 implies pi

N∑
j=1

aij =
N∑

j=1

pjaji, we have

N∑
i=1

pixi

N∑
j=1

aij(xi − xj) =

N∑
i=1

x2
i

N∑
j=1

pjaji−
N∑

i=1

pi

N∑
j=1

aijxixj =

N∑
i=1

x2
j

N∑
j=1

piaij−
N∑

i=1

N∑
j=1

piaijxixj =

N∑
i=1

pi

N∑
j=1

aijxj(xj − xi).
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Then it follows that

xTQx = 2xTPLx =

2
N∑

i=1

pixi

N∑
j=1

aij(xi − xj) =

N∑
i=1

pixi

N∑
j=1

aij(xi − xj)+

N∑
i=1

pixj

N∑
j=1

aij(xj − xi) =

N∑
i=1

pi

N∑
j=1

aij(xi − xj)2 � 0

�
Lemma 4 Let the digraph be strongly connected, and

Q is defined in (3), then N(Q) = N(L) = span{1N}.
Proof First, it is obvious that N(L) ⊆ N(Q) ac-

cording to (3). Since the directed graph is strongly con-
nected, N(L) = span{1N}, span{1N} ⊆ N(Q). There-
fore, Q1N = 0 and Q is a valid symmetric Laplacian
matrix of an augmented graph Ḡ, which has the same
node set as graph Ḡ, and the weight of edge (i, j) is
āij = piaij + pjaji. It is obvious that Ḡ is undirected
and hence balanced. We hereafter call Ḡ as the weighted
mirror graph of the original digraph G.

Next, we need to show that the rank of Q is N−1. Since
pi > 0, it is clear that if aij > 0, then āij > 0. Strong con-
nectedness of graph G implies the strong connectedness of
the corresponding weighted mirror graph G, thus we have
N(Q) = span{1N} and N(Q) = N(L). �

Let ε2 ∈
N⋂

j=1

(0, Rj) be a small hysteresis constant,

where Rj is the communication radius of agent j. Link ad-
ditions and deletions are regulated by the following rules:

(i) Initial links are generated by E(0) =
{(i, j)|||rij(0)|| < Rj − ε0}, where 0 < ε0 < ε2.

(ii) If (i, j) /∈ E(t−) ∧ ||rij(t)|| < Rj − ε2, then (i, j)
is a new link being added to E(t).

(iii) If (i, j) ∈ E(t−) ∧ ||rij(t)|| � Rj , then (i, j) /∈
E(t).

t− refers to the time instant before topology changes; ∧
is the boolean AND operation.

In order to realize the desired stable flocking behavior,
the control protocols should contain two components. One
is responsible for synchronizing the headings and the linear
velocities of all robots, and the other one aims at steering
them to move cohesively without collisions while guaran-
teeing strong connectedness of the entire system as time
evolves. For this end, the explicitly distributed flocking

control protocol for each robot i is designed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai = −
∑
j∈Ni

aij(〈∇riVi, (cos θi, sin θi)T〉−

〈∇rj Vj , (cos θj , sin θj)T〉)
∥∥∥∥∥∥
∑
j∈Ni

aij(vi − vj)

∥∥∥∥∥∥−
1
2
∇riVi − k

∑
j∈Ni

aij(vi − vj)

ωi = −
∑
j∈Ni

aij(〈∇riVi, (− sin θi, cos θi)T〉−

〈∇rjVj , (−sin θj , cos θj)T〉)
∥∥∥∥∥∥
∑
j∈Ni

aij(θi−θj)

∥∥∥∥∥∥−
k
∑
j∈Ni

aij(θi − θj)

(4)
where k > 0 is the control gain; 〈·〉 denotes the in-
ner product of the vectors; | · | is defined componenwise;
Vi =

∑
j∈Ni

Vij is the potential defined as the sum of all

artificial potentials associated with each of its neighbors;
〈∇riVi, (cos θi, sin θi)

T〉 and 〈∇riVi, (− sin θi, cos θi)
T〉

denote the projection of ∇riVi onto the directions aligned
with and perpendicular to the translational velocity of each
robot i, respectively.

Remark 1 Note that in (4), the first two terms of ai

are responsible for relative distance stabilization, collision
avoidance as well as connectivity maintenance simultane-
ously, while the last term of ai is responsible for reach-
ing velocity consensus among all robots. Similarly, the first
two terms of ωi in (4) aim at synchronizing the headings
of all neighboring robots. The combination of a i and ωi

constitutes the flocking control input for each robot i, and
the boundedness of (4) is strongly dependent on the de-
sign of the finite potentials Vij(∀j ∈ Ni), which will be
detailed later.

To enable the overall system to achieve the desired
stable flocking motion using only bounded control inputs,
Vij(‖rij‖) should be carefully designed to be a kind
of bounded and nonnegative artificial potential with re-
spect to rij while integrating connectivity maintenance
and collision avoidance, such that

(i) Vij(‖rij‖) is continuously differentiable for ‖rij‖ ∈
(0, Rj);

(ii) Vij(‖rij‖) is monotonically decreasing for ‖rij‖ ∈
(0, d) and monotonically increasing for ‖r ij‖ ∈ (d, Rj),
where 0 < ε1 < d < Rj − ε2;

(iii) Vij(0) = c1 + Hmax, Vij(Rj) = c2 + Hmax,
where c1, c2 � 0, Hmax = v(0)TPv(0)+θ(0)TPθ(0)+
N(N − 1)Vmax, Vmax = max{V (ε1), V (Rmax − ε2)},
Rmax = max

i∈V
{Ri} and ε1 = min

i,j∈V
{‖rij(0)‖.

Condition (i) aims at producing a smooth controller for
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each robot; condition (ii) illustrates that the potential V ij

provides an attractive or repulsive force between agents i
and j when their distance tends to Rj or zero; condition
(iii) states that the potential will be sufficiently large when
the distance between them reaches Rj or zero, which gua-
rantees the connectivity maintenance and collision avoi-
dance. One candidate example is given as below:

V (||rij ||) =
(||rij || − d)2(Rj − ||rij ||)
||rij ||+ d2(Rj − ||rij ||)

c1 + Hmax

+

||rij ||(||rij || − d)2

(Rj − ||rij ||) +
||rij ||(Rj − d)2

c2 + Hmax

. (5)

Note that in [18,20,23], two kinds of specific potential
functions are introduced and tend to the infinity when the
relative distance between two agents i and j tends to R,
which may not be practical since it will require infinitely
large (unbounded) control effort. Let fmax be the magni-
tude of the maximum potential force, then we have the fol-
lowing theorem.

Theorem 1 Consider a system of N mobile robots
with nonholonomic dynamics (1), each steered by protocol
(4). Suppose that the initial energy H(0) is finite and the
initial communication network G(0) is strongly connected
but not balanced, and

λ2(Q(0)) > 2fmaxN
2(N − 1)/k

where Q = PL + LTP .
Then the network will be strongly connected for all

time, all the agents asymptotically converge to the same
velocity, collisions between agents are avoided and all the
interagent distances are stabilized.

Proof Consider the positive semi-definite function as

H =
N∑

i=1

pi

∑
j∈Ni

Vij(‖rij‖) + vTPv + θTPθ.

Assume that G(t) switches at time tk (k = 1, 2, . . .)
and keeps fixed over each time interval [tk−1, tk). Specifi-
cally, H(0) is finite, then take the time derivative of H(t)
on [0, t1), which yields

Ḣ =
N∑

i=1

vT
i ṗi

∑
j∈Ni(t)

∇riVij + 2θTP ·

(−kLθ −L(∇V )⊥||Lθ||)+

2vTP

(
−kLv −L(∇V )‖||Lv|| − 1

2
∇V

)
=

kθT(PL + LTP )θ − 2θTPL(∇V )⊥||Lθ||−
kvT(PL + LTP )v − 2vTPL(∇V )‖||Lv|| (6)

where ∇V = [∇r1V1,∇r2V2, . . . ,∇rN VN ]T; (∇V )⊥ =
[(∇r1V1)⊥, . . . , (∇rN VN )⊥]T; (∇V )‖ = [(∇r1V1)‖, . . . ,
(∇rN VN )‖]T; (∇riVi)‖ and (∇riVi)⊥ are the compo-
nents of∇riVi when expressed in a body-fixed coordinate
frame, aligned with and perpendicular to the translational
velocity of robot i, respectively.

Further, decompose v and θ as v = v1N ⊕ v1⊥
N and

θ = θ1N ⊕θ1⊥
N . Superscripts 1N and 1⊥

N denote the com-
ponents along the direction of the vector of all ones and its
orthogonal. Then, (6) becomes

Ḣ = −kθT(PL + LTP )θ − 2θTPL(∇V )⊥||Lθ||−
kvT(PL + LTP )v − 2vTPL(∇V )‖||Lv|| �
−kλ2(Q)||θ1⊥

N ||2 + 2fmax||θ1⊥
N ||
∥∥∥Lθ1⊥

N

∥∥∥−
kλ2(Q)||v1⊥

N ||2 + 2fmax||v1⊥ ||
∥∥∥Lv1⊥

N

∥∥∥ �

−(kλ2(Q)− 2fmaxN
2(N − 1))||θ1⊥

N ||2−
(kλ2(Q)− 2fmaxN

2(N − 1))||v1⊥
N ||2. (7)

According to the initial condition λ2(Q(0)) >

2fmaxN
2(N − 1)/k, we have

Ḣ(t) � 0, ∀t ∈ [0, t1). (8)

Therefore, H(t) will be decreasing in [0, t1), and from
(5), one has Vij(Rj) � Hmax > H(0) (∀(i, j) ∈
E). Therefore, for each robot i, no edge-distance will tend
to Rj (∀j ∈ Ni). Hence, new edges must be added into
the network at the switching time t1 and the strong con-
nectedness of G(t) is preserved for t ∈ [0, t1). Without
loss of generality, assume that there are N1 new links be-
ing added to the communication network at time t1. Ac-
cording to the fact that G(t) is strongly connected over
t ∈ [0, t1), one has that G(t) contains at least N edges,
thus it follows 0 < N1 � Nmax = N(N − 2), and
H(t1) < H(0) + NmaxV (‖Rmax − ε2‖). Furthermore,
according to the fact that new edges must be added into
the network at the switching time and applying Lemma 2
to the undirected weighted mirror graph Ḡ, we have
λ2(Q(t1)) � λ2(Q(0)). Therefore, for arbitrary k � 2,
one may get λ2(Q(tk−1)) > λ2(Q(0)) by induction. Fol-
lowing the same analysis and taking the time derivative of
H(t) in [tk−1, tk), we can get

Ḣ(t) � −(kλ2(Q(tk−1))−2fmaxN
2(N−1))||θ1⊥

N ||2−

(kλ2(Q(tk−1))− 2fmaxN
2(N − 1))||v1⊥

N ||2 (9)

which implies

H(t)�H(tk−1) < Hmax, ∀t ∈ [tk−1, tk); k=1, 2, . . .

(10)
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Thus, no edge-distance will be tend to Rj (∀j ∈ Ni),
which implies that no edges will be lost at time tk. Since
G(0) is strongly connected and no edges in E(0) will be
lost. G(t) will be strongly connected for all time. Assume
that there are Nk new links being added to the interaction
network at time tk. Clearly, 0 < Nk � Nmax, then we
have

H(tk) � H(0) + (N1 + N2 + . . . + Nk) � Hmax. (11)

Since there are at most Nmax new edges that can be
added to G(t), one has k � Nmax (∀t � 0). There-
fore, the number of switching times k is finite, which
implies that the interaction topology G(t) eventually be-
comes fixed. Hence, the rest analysis can be restricted to
[tk, +∞). Note that the length of each edge will not be
longer than max{V −1(Hmax)} and not be shorter than
min{V −1(Hmax)} during the system evolution. Hence,
the set Ω = {r̄ ∈ D, θ ∈ RN , v ∈ R2N |
H(r̄, θ, v) � Hmax} is a positively invariant set,
where D = {r̄ ∈ R2N2 |rij ∈ [min{V −1(Hmax)},
max{V −1(Hmax)}], ∀(i, j) ∈ E(t)} and r̄ =
(rT

11, . . . , r
T
1N , . . . , rT

N1, . . . , r
T
NN)T. Because G(t) is

strongly connected for all time, ‖rij‖ � (N −
1)Rmax, ∀(i, j) ∈ E(t). Since H(t) � H(0) � Hmax,
then it follows ||vi|| �

√
2Hmax, |θi| �

√
2Hmax. There-

fore, Ω is compact. Note that system (1) with control in-
put (2) is an autonomous system, at least in the concerned
time interval [tk,∞). Then the LaSalle’s invariance princi-
ple can be applied to infer that, if the initial conditions of
the system lies in Ω [46], all the trajectories will converge
to the largest invariant set inside the region

S = {r̃ ∈ D, θ ∈ RN , v ∈ R2N |Ḣ = 0}. (12)

From (9), Ḣ = 0 if and only if θ1⊥
N = 0 and v1⊥

N = 0,
which implies that v and θ are parallel to 1N , i.e., θ1 =
· · · = θN = θ�, v1 = · · · = vN = v�. This means that all
the robots asymptotically move with the same velocity and
the same orientation. Then we have

ω1 = · · · = ωN = 0, a1 = · · · = aN = 0.

Subtituting (4) into (1), then in the steady state, we have

ẋi = v� cos θ�, ẏi = v� sin θ� (13)

and

a = −

⎡
⎢⎣
∇r1V1j

...
∇rN VNj

⎤
⎥⎦ = 0 (14)

where a = [aT
1 , aT

2 , . . . ,aT
N ]

T ∈ R2N . Equation (14) im-
plies that the multi-robot systems asymptotically converge

to a fixed configuration corresponding to an extremum of
robot’s global potential. However, every point but local
minima is an unstable equilibrium, thus almost every fi-
nal configuration locally minimizes the global potential∑
j∈Ni

∇riVij associated with each robot i.

Finally, suppose that robots i and j collide with each
other. However, in view of (11), we have H(t) �
Hmax (∀t � 0), and from (5), we have lim

‖rij‖→0
Vij(0) �

Hmax, which reaches a confliction. Therefore, collisions
among agents are avoided. �

3.2 Flocking with a virtual leader

In this section, the problem of flocking control with a vir-
tual leader is investigated. Denote rl = [xl, yl]T, vl and θl

are the position, constant velocity and orientation vectors
of the virtual leader. Then denote r̃i = ri−rl, ṽi = vi−vl

and θ̃i = θi − θl as the position error, velocity error and
orientation error vectors, respectively. By the definition of
Vij(‖rij‖), it follows that Vij(‖rij‖) = Ṽij(‖r̃ij‖), where
r̃ij = r̃i− r̃j . Here, it is assumed that only a small fraction
δ ∈ [0, 1) of the robots can communicate with the leader
and gets its information. In this case, similar to the design
idea of (4), the explicit form of the tracking control proto-
col for each follower i is specified as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai = −〈∇r̃i
Ṽi, (cos θi, sin θi)T〉|

∑
j∈Ni

aij(vi − vj)|−
1
2

∑
j∈Ni∪{l}

∇r̃i
Ṽij(||r̃ij ||)−k

∑
j∈Ni

aij(vi−vj)−hiṽi

ωi = −〈∇r̃i
Ṽi, (−sin θi, cos θi)T〉|

∑
j∈Ni

aij(θi−θj)|−

k
∑
j∈Ni

aij(θi − θj)− hiθ̃i

(15)
where Ṽi =

∑
j∈Ni

Ṽij ; | · | is the absolute value operator

acting on each component of a vector; if robot i is the in-
formed robot, hi = 1, otherwise, hi = 0.

Remark 2 Note that in (15), the first two terms of ai

are responsible for relative distance stabilization, collision
avoidance as well as connectivity maintenance simultane-
ously, while the last two terms of ai are responsible for
achieving velocity consensus among all followers and the
virtual leader. Similarly, ωi aims at synchronizing the ori-
entations among all followers with the virtual leader. Both
ai and ωi constitute the final tracking control inputs for
each follower i.

Then we have the theoretical result which is stated as
the following theorem.

Theorem 2 Consider a system of N mobile robots
with dynamics (1), each of them is steered by the con-
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trol protocol (15). Suppose that the initial network G(0)
is strongly connected and the initial energy is finite. If

λ2((kQ + 2PH)(0)) >
2fmaxN(N − 1)

k
(16)

where H = diag{h1, h2, . . . , hN}. Then G(t) is strongly
connected for all t � 0, all the robots asymptotically con-
verge to the desired velocity and orientation with the vir-
tual leader, while collisions between all robots are avoided.

Proof Consider the following positive semi-definite
Lyapunov function:

U =
N∑

i=1

pi

∑
j∈Ni∪{l}

Ṽij(||r̃ij ||) + ṽTP ṽ + θ̃TP θ̃ (17)

where ṽ = [ṽT
1 , . . . , ṽT

N ]T and θ̃ = [θ̃1, . . . , θ̃N ]T. Similar
to the proof of Theorem 1, it can be shown that the time
derivative of U(t) in [tk−1, tk) is

U̇ = 2θ̃TP (−kLθ̃ − diag{(∇r̃i
Ṽi)⊥}|Lθ̃| −Hθ̃)+

2ṽTP

(
−kLv−diag{(∇r̃i

Vi)‖}Lṽ−1
2
∇Ṽ−Hṽ

)
+

N∑
i=1

ṽT
i pi

∑
j∈Ni(t)∪{l}

∇r̃i
Ṽij �

−θ̃T(kQ + 2PH)θ̃ + 2fmax||θ̃||||P ||||Lθ̃||−
ṽT(kQ + 2PH)ṽ + 2fmax||ṽ||||P ||||Lṽ|| �
−(λmin(Ξ )− 2fmaxN(N − 1))||θ̃||2−

(λmin(Ξ )− 2fmaxN(N − 1))||ṽ||2 (18)

where Ξ = kQ + 2PH , and

diag{(∇r̃i
Vi)‖} =

⎡
⎢⎣

(∇r̃1 Ṽ1)‖ · · · 0
...

. . .
...

0 · · · (∇r̃N
ṼN )‖

⎤
⎥⎦

diag{(∇r̃i
Vi)⊥} =

⎡
⎢⎣

(∇r̃1 Ṽ1)⊥ · · · 0
...

. . .
...

0 · · · (∇r̃N
ṼN )⊥

⎤
⎥⎦ .

Since PH is positively semi-definite, from Lemma 2 and
(16), we can get

U̇(t) � 0, ∀t ∈ [tk−1, tk); k = 1, 2, . . . (19)

which implies

U(tk) � U(tk−1) < Umax, k = 1, 2, . . . (20)

where

Umax = θ̃T(0)P θ̃(0) + ṽT(0)P ṽ(0)+
(N2 −N − 1)Vmax.

(21)

Therefore, for each robot i, no edge distance will tend to
Rj (∀j ∈ Ni(t)) for all t ∈ [tk−1, tk), which indicates that
no edge will be lost at time tk. Since G(0) is strongly con-
nected and no edges in E(0) will be lost, G(t) is strongly
connected for all t � 0.

Similar to the proof of Theorem 1, the set

Ω = {ṽ ∈ R2N , θ̃ ∈ RN , r̃ ∈ Dg|U(ṽ, θ̃, r̃) � U(0)}

(22)

is compact, where Dg = {r̃ ∈ R2N2 |[min{V −1
ij (Umax)},

max{V −1
ij (Umax)}], ∀(i, j) ∈ E(t)}.

Then it follows the LaSalle’s invariance principle that
all the trajectories will converge to the largest invariant set
inside the set

S = {ṽ ∈ R2N , θ̃ ∈ RN , r̃ ∈ Dg|U̇ = 0}

which implies ṽ1 = ṽ2 = · · · = ṽN and θ̃1 = · · · =
θ̃N = 0 from (18), i.e., v1 = · · · = vN = vl and
θ1 = · · · = θN = θl. This also implies that in the steady
state, θ̇1 = · · · = θ̇N = θ̇l = 0 and v̇1 = · · · = v̇N =
v̇l = 0. From (15), we have

v̇ = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j∈N1∪{l}

∇r̃1 Ṽ1j

∑
j∈N2∪{l}

∇r̃2 Ṽ1j

...∑
j∈NN∪{l}

∇r̃N
Ṽ1j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (23)

Thus, almost every final configuration locally minimises
each robot’s global potential∇ r̃i

Ṽij . Finally, following the
same procedure in Theorem 1, the collision avoidance be-
tween each pair of robots can be proved. �

4. Simulations and experiments

4.1 Simulation of flocking without virtual leader

In this section, comparative numerical simulations are
performed to verify the advantage of our connectivity-
preserving distributed flocking algorithm with connectivi-
ty maintenance over that without connectivity mainte-
nance. The simulations are performed with five agents
with dynamics (1) moving in the plane. The number of
robots in the group is kept small for clarity of presenta-
tion. It is assumed that the initial time t0 = 0 s, the sen-
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sing radii of all the wheeled mobile robots are set to be
R1 = R2 = R4 = 2.5 m, R3 = R5 = 3 m. Initial posi-
tions, velocities and headings are randomly set, satisfying
the following conditions:

(i) All the initial positions of the robots are set within
the circle of radius R = 10 m with a randomly gener-
ated weighted adjacency matrix to meet the requirement
that the initial directed communication network is strongly
connected.

(ii) All the initial velocities of the robots are chosen
randomly with magnitudes belonging to the range of [0,
2 m/s].

(iii) All the initial headings of the robots with arbitrary
directions are chosen within (−π,π].

Furthermore, the potential function V is defined in (5)
with the desired distance d = 2 m, and ε0 = ε2 =
0.2, ε1 = 0.5. The weights are set as aij = 1 for all
(i, j) ∈ E. The control gain is set to k = 10. Through
some simple derivations, we have Vmax = V (Rmax − ε2),
then

Hmax � N(N − 1)V (Rmax − ε2)+

Nλmax(P )max
i∈V

ṽi(0)Tṽi(0)+

Nλmax(P )max
i∈V

θ̃i(0)Tθ̃i(0). (24)

Thus we can get Hmax � 748.3. Choose c1 = c2 = 50,
we have the explicit form of the potential function.

Vij(||rij ||) =
(||rij || − 2)2(Rj − ||rij ||)
||rij ||+ (Rj − ||rij ||)

200

+

||rij ||(||rij || − 2)2

(Rj−||rij ||)+ ||rij ||(Rj−2)2

800

(25)

Fig. 1 shows the common initial strongly connected but
not balanced communication topology for both algorith-
ms. The robots are denoted as red rectangles, the unidirect-
ional neighboring relations between the robots are repres-
ented by black solid lines with arrows, and the bidirect-
ional neighboring relations are represented by black solid
lines without arrows. The motion trajectories of all robots
under the control protocol (4) are depicted in Fig. 2(a) and
Fig. 2(b) at t = 20 s and t = 40 s, respectively, from which
it can be seen that all the existing links are kept and the
new links are added to the original network as the system
evolves, then the strong connectedness of the underlying
directed network is preserved. Fig. 2(c) shows that all the
robots eventually achieve the same velocities and orienta-
tions, while achieving collision avoidance with the neigh-
boring robots during the whole control process. The stable
flocking behavior is generated asymptotically.

Fig. 1 Initial configuration of five mobile robots

Fig. 2 Flocking of five mobile robots with (4)

Fig. 3(a) and Fig. 3(b) illustrate the synchronization
of the velocities along both x and y axes, and the syn-
chronization of the orientations of the group is shown in
Fig. 3(c), which verifies the theoretical analysis very well.

The simulation results without connectivity preservation
are illustrated in Fig. 4, which shows the typical consecu-
tive video snaps during the whole process of system evo-
lution. It can be concluded that, for some special initial
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states, the flocking algorithm without connectivity mainte-
nance results in the network fragmentation and the robots
finally form different separated subgroups instead of form-
ing a cohesive connected flock. The velocities and orienta-
tions of all robots fail to synchronize to a common value
as a whole. On the contrary, the stable group flocking be-
havior could be achieved under control protocal (4) by uti-
lizing the bounded artificial potential functions (5). There-
fore, the conclusion can be safely drawn that the connec-
tivity preservation is indispensable and the potential func-
tions with connectivity preserving should be well-designed
to ensure the stability of the whole flock under arbitrary
initial configurations.

Fig. 3 Velocity and orientation curves of five mobile robots

Fig. 4 Simulation of flocking of five mobile robots without connec-

tivity maintenance

4.2 Experiment of flocking without virtual leader

In this section, the experimental results are presented to il-
lustrate the effectiveness of the control protocal (4), which
are performed with five differential-drive nonholonomic
wheeled mobile robots that consist of four Pioneer3-AT
robots and a Pioneer3-DX robot. The initial positions are
initialized to ensure that the initial network is strongly con-
nected. The linear velocities of the robots are randomly
chosen in the range of [0, 2 m/s], and the maximum speed
is 3 m/s. The control period is T = 0.5 s and the com-
munication radii are set to R1 = R2 = R4 = 2.5 m,
R3 = R5 = 3 m. The desired distance is d = 1 m. More-
over, it is assumed that all the robots are subject to non-
slipping and pure-rolling constraints and each robot has
access to the information needed via its wireless commu-
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nication equipment.
Fig. 5 illustrates typical experiment snapshots during the

entire evolution of the proposed flocking protocal (4). The
unidirectional communication links are denoted by the
solid yellow lines with red arrows, and the bidirectional
communication links are denoted by the solid yellow lines
without arrows.

Fig. 5 Experiment validation of flocking of five mobile robots

Fig. 5(a) shows the initial configuration of the strongly
connected directed but not balanced communication topol-
ogy. Fig. 5(b) and Fig. 5(c) illustrate the consecutive typi-
cal snapshots of the motion evolution process at t = 20 s
and t = 35 s. The final state of the system is shown in
Fig. 5(d). It is obvious that the strongly connectedness of
the underlying time-varying directed network is preserved
during the whole system evolution. All the robots could
successfully obtain the same velocities and orientations as
a cohesive flock without collisions, and the stable desired
flocking motion is finally achieved asymptotically.

4.3 Simulation of flocking with virtual leader

Finally, simulations of flocking with a virtual leader un-
der control protocol (15) are performed with five agents
moving in the Euclidean plane. The communication radii
of all the robots are set as R1 = R5 = 5 m, and
R2 = R3 = R4 = 3 m, respectively. Once again, the
initial directed network is set to be strongly connected but
not balanced. Initial velocities of the five agents are chosen
randomly from the range of [–3 m/s, 3 m/s]. The desired
velocity and orientation of the virtual leader are chosen as
vl = 2 m/s and θl = −π/2, respectively. The values are
set as ε1 = 0.9, ε0 = ε2 = 0.5. It can be easily deduced
that Vmax = V (Rmax − ε2) and according to (5), we have

Hmax � N(N − 1)V (Rmax − ε2)+

Nλmax(P )max
i∈V

ṽT
i (0)ṽi(0)+

Nλmax(P )max
i∈V

θ̃T
i (0)θ̃i(0). (26)

Thus we get Hmax � 1 990.7, further choose c1 = c2 =
10, d = 2, then the bounded potential function (5) is se-
lected as follows:

Vij(||rij ||) =
(||rij || − 2)2(Rj − ||rij ||)
||rij ||+ (Rj − ||rij ||)

500

+

||rij ||(||rij || − 2)2

(Rj − ||rij ||) +
||rij ||(Rj − 2)2

2000

. (27)

Fig. 6 shows the whole process of the simulation with a
period of 50 s. Fig. 6(a) depicts the initial state of the sys-
tem, in which the informed agent is chosen randomly from
the group and marked with a capital letter ‘L’. Fig. 6(b)
and Fig. 6(c) illustrate the consecutive video snaps at t =
10 s and t = 30 s. It is obvious that the initially dis-
persed robots tend to form a cohesive flock without violat-
ing the strong connectedness of the network. The final state
is shown in Fig. 6 (d), from which it can be seen that the ve-
locities and headings of all robots finally become the same
and the stable flocking motion is asymptotically achieved
without collisions.
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Fig. 6 Flocking of five mobile robots with (15)

Fig. 7 demonstrates the tracking results with a virtual
leader qualitatively and quantitatively. Fig. 7(a)–Fig. 7(c)
show the convergence of and the velocity tracking errors
of each robot along the x and y axes orientation tracking
errors, respectively, from which it can be observed that all
the tracking errors asymptotically converge to zero. There-
fore, all agents eventually reach the desired velocity v l and

the desired orientation θl.

Fig. 7 Velocity and orientation convergence of five mobile robots

5. Conclusions and future work

In this paper, a set of distributed flocking algorithms
with bounded control inputs has been investigated to en-
able the multi-robot systems with nonhonolomic kinema-
tics. Through devising a new class of bounded artifi-
cial potential functions which nicely integrates the colli-
sion avoidance, inter-distance stabilization and connectiv-
ity maintenance simultaneously, all the existing communi-
cation links are preserved, the velocities and orientations of
all robots are guaranteed to be synchronized, and collisions
between the robots are avoided. It has been shown that
the proposed algorithm could enable the group of multiple
robots to asymptotically achieve the stable flocking mo-
tion, provided that the initial directed network is strongly
connected but not balanced and the algebraic connectivi-
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ty of its augmented weighted mirror graph is larger than
a threshold. Moreover, the problem of cooperative flock-
ing with a virtual leader has also been investigated. With
the modified local control protocols, all the robots could
achieve velocity and orientation synchronization as well as
collision avoidance even if only one robot has the informa-
tion about the virtual leader. Finally, extensive simulations
and experiments have been performed, which showes the
consistency with the theoretical results.

However, there are some issues that need to be ad-
dressed in the future. First, it will be interesting and chal-
lenging to derive flocking control protocols by using only
position information. Second, it will be also interesting to
extend the proposed bounded flocking control strategies to
more complex environmental settings with multiple mo-
ving obstacles and more general directed networks.
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