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Abstract: The problem of distributed coordinated tracking control
for networked Euler-Lagrange systems without velocity measure-
ments is investigated in this paper. Under the condition that only a
portion of the followers have access to the leader, sliding mode es-
timators are developed to estimate the states of the dynamic leader
in finite time. To cope with the absence of velocity measurements,
the distributed observers which only use position information are
designed. Based on the outputs of the estimators and observers,
distributed tracking control laws are proposed such that all the fol-
lowers with parameter uncertainties can track the dynamic leader
under a directed graph containing a spanning tree. It is shown that
the distributed observer-controller guarantees asymptotical stabil-
ity of the closed-loop system. Numerical simulations are worked
out to illustrate the effectiveness of the control laws.
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1. Introduction

Distributed control of multi-agent systems has received
increasing concern due to its broad applications in vari-
ous fields, ranging from physics, engineering to biology
[1,2]. Currently, most research works on multi-agent sys-
tems mainly concentrate on linear systems [3–5]. How-
ever, for some kinds of mechanical systems, such as au-
tonomous vehicles, robotic manipulators and rigid bo-
dies, the nonlinear dynamics can not be neglected in prac-
tice. Hence it is of great significance to study coordinated
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control of Euler-Lagrange systems which can generally de-
scribe motion of mechanical systems [6,7]. The problem
of distributed control for networked Euler-Lagrange sys-
tems recently has been studied in [8–14]. The consensus
of multiple Euler-Lagrange systems with self-delays and
uncertainties under strongly connected digraph was consi-
dered in [8]. In [9,10], the problem of leaderless consensus
for multiple Euler-Lagrange systems was investigated. The
adaptive consensus protocols in the case of time-delay and
switching topology with the assumption that the graph was
balanced were proposed in [9]. The output synchroniza-
tion of the multiple Euler-Lagrange systems was achieved
under both fixed and switching topology based on the pas-
sivity property of mechanical systems in [10]. The problem
of tracking a leader or equivalently a reference for a class
of mechanical systems modeled by Euler-lagrange equa-
tions was studied in [11–14]. In [11], the nonlinear contrac-
tion theory was applied to prove the stability for multiple
robotic manipulators. However, it was required that all the
followers should have access to the dynamic leader, which
is rather restrictive. A distributed adaptive control law was
designed to track the reference trajectory for multiple un-
certain mechanical systems in [12], where the topology
was required to be undirected. Reference [13] coped with
the tracking problem for networked Euler-Lagrange sys-
tems under the condition that the leader’s generalized co-
ordinate derivative was constant and time-varying, respec-
tively. Accordingly, an adaptive control law together with
a distributed continuous estimator in the case of stationary
leader and a model-independent sliding mode control al-
gorithm in the case of dynamic leader were proposed. In
[14], the containment problem (i.e., tracking with multi-
ple leaders) was concerned in the presence of paramet-
ric uncertainties under a directed graph. Similarly, a dis-
tributed adaptive controller was proposed such that the fol-
lowers could converge into the convex hull spanned by
leaders. Although the distributed coordinated control was
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realized on directed graphs in [13,14], the full state infor-
mation was required in the proposed controllers.

It should be noticed that all the above mentioned re-
search works are conducted under the condition that all
the followers’ information is required to be available in
order to implement the controller design. Nevertheless,
in practice, velocity and acceleration measurements may
not always be measurable due to the strict constraints on
the cost and space for installing the devices. In [15], the
containment control algorithms via only position measure-
ments were proposed based on the super twisting algo-
rithm. The coordinated control problem without veloc-
ity measurements was studied in [16,17]. However, [15–
17] only considered the systems with linear integrator mo-
dels. Up to now, there are very few papers dealing with
distributed control of nonlinear systems without velocity
measurements. The distributed tracking problem with a dy-
namic leader using only position measurements was in-
vestigated in [18]. Ren proposed distributed algorithms for
networked Euler-Lagrange systems without velocity infor-
mation [19]. However, the undirected topology among fol-
lowers should be connected in [18,19].

In this paper, only the position measurements among the
followers are used to achieve distributed coordinated trac-
king for networked Euler-Lagrange systems with parame-
ter uncertainties, while moreover only a subset of followers
have access to the leader on a directed graph. To overcome
this challenging problem, new observers and estimators
are designed with the aid of followers’ position measure-
ments, then distributed control laws are proposed based on
the outputs of the observers and estimators. The main con-
tributions of this paper are that a new framework of dis-
tributed observers and an observer-based adaptive control
method are proposed, which are based on a novel term that
is elaborately designed to compensate the absence of ve-
locity measurements. Besides, the stability of the system is
proved theoretically based on algebraic graph theory and
Lyapunov analysis.

The subsequent sections are organized as follows. Sec-
tion 2 introduces the model of the agents to be controlled
and the graph theory. In Section 3, distributed sliding-
mode estimators are developed in the first part. Then, dis-
tributed velocity observers are presented, followed by the
main result (Theorem 1) and the stability analysis. Nume-
rical examples are carried out to show the effectiveness of
the proposed control algorithms in Section 4. Section 5
gives the conclusion.

2. Background

A team of n mechanical systems labeled as agents 1 to n

are considered as followers, and a leader is labeled as agent

0. They are all described by Euler-Lagrange equations as
follows:

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) = τi, i = 1, · · · , n
(1)

where qi ∈ Rp is the vector of generalized coordinates,
Mi(qi) ∈ Rp×p is the symmetric positive-definite inertia
matrix, Ci(qi, q̇i)q̇i ∈ Rp is the vector of Coriolis and
centrifugal torques, Gi(qi) is the vector of gravitational
torques, and τi ∈ Rp is the vector of control torque on the
agent i.

In the following, we define, respectively, M(q) �
diag[M1(q1), . . . , Mn(qn)], C(q, q̇) � diag[C1(q1, q̇1),
· · · , Cn(qn, q̇n)], and G(q) � [GT

1 (q1), · · · , GT
n (qn)]T.

Let ‖ · ‖ and x(i) denote the Euclidean norm and the ith
order derivative of x, respectively. For (1), the following
properties hold [20,21].

Property 1 For any i, there exist positive constants
km, km and kC such that 0 < kmIp � Mi(qi) � kmIp,

‖Ci(x, y)z‖ � kC‖y‖‖z‖ for all vectors x, y, z ∈ Rp.

Property 2 Ṁi(qi)−2Ci(qi, q̇i) is skew symmetric:

ξT[Ṁi(qi) − 2Ci(qi, q̇i)]ξ = 0, ∀ξ ∈ Rp. (2)

Property 3 Equation (1) is linearly parameterizable:

Mi(qi)ξ + Ci(qi, q̇i)ζ + Gi(qi) = Yi(qi, q̇i, ξ, ζ)Θ i

(3)
for all vectors ξ, ζ ∈ Rp, where Yi(qi, q̇i, ξ, ζ) is the re-
gressor and Θ i is an unknown but constant parameter vec-
tor associated with the agent i.

G Δ= (V , E) is used to represent the interactions among

the agents 1 to n with the node set V Δ= {1, . . . , n} and
the edge set E ⊆ V × V . The edge (i, j) denotes that the
agent i transmits information to the agent j in a directed
graph, but not vice versa. In an undirected graph, an edge
(i, j) ∈ E if agents i and j can receive information from
each other. Here, it is assumed that there is no loop in the
graph, i.e., (i, i) �∈ E . If an edge (i, j) ∈ E , then we call
the node i a neighbor of the node j. Thus, the neighbor set

of the agent i is defined as Ni
Δ= {j|(j, i) ∈ E}. The root

is a node that has directed paths to all the other nodes in
a directed graph. A directed tree contains exactly one root
and every other node has only one parent. A directed tree is
called a directed spanning tree if it consists of all the nodes
in a graph. A directed graph contains a directed spanning
tree as long as one of its subgraphs is a directed spanning
tree [22]. The adjacency matrix A = [aij ] ∈ Rn×n is
defined such that aij > 0 if (j, i) ∈ E , and aij = 0 other-
wise. Note that, aij = aji in an undirected graph. Let the

Laplacian matrix L = [lij ] ∈ Rn×n, with lii =
n∑

j=1,j �=i

aij
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and lij = −aij , i �= j.

Lemma 1 [23] Let G Δ= (V , E) be the directed graph
characterizing the interaction among the n followers and
the leader, accordingly, ai0 > 0 if (0, i) ∈ E and ai0 = 0
otherwise. Considering the extended graph G, the gene-
ralized Laplacian matrix H � L + diag(a10, . . . , an0) is
positive stable if the leader has directed paths to all the fol-
lowers.

Assumption 1 The desired trajectory q0 is differen-
tiable, and its derivatives are bounded, i.e., ‖q̇0‖∞ �
η1, ‖q̈0‖∞ � η2 and ‖q(3)

0 ‖∞ � η3, where ηi(i = 1, 2, 3)
are positive scalars.

Assumption 2 The initial observation and tracking er-
rors of the ith agent are bounded, i.e., e

(j)
oi (0) � δ0 and

ẽ
(j)
i (0) � δ1 (i = 1, 2, . . . , n, j = 0, 1, 2), where eoi and

ẽi are defined later.

3. Main results

To deal with the problem of distributed tracking control
without velocity measurements, new distributed tracking
control algorithms are proposed for the networked Euler-
Lagrange systems under the interaction topology where the
leader is only available to a subset of the followers.

3.1 Estimator design

Since the states of the leader are only known by parts of the
followers, inspired by [14], the distributed sliding-mode
estimators are designed to estimate the information of the
leader as

˙̃q0i = −α1sgn

⎡
⎣ ∑

j∈Ni

aij(q̃0i − q̃0j) + ai0(q̃0i − q0)

⎤
⎦

(4a)

˙̃v0i = −α2sgn

⎡
⎣ ∑

j∈Ni

aij(ṽ0i − ṽ0j) + ai0(ṽ0i − q̇0)

⎤
⎦

(4b)

˙̃a0i = −α3sgn

⎡
⎣ ∑

j∈Ni

aij(ã0i − ã0j) + ai0(ã0i − q̈0)

⎤
⎦

(4c)
where q̃0i (ṽ0i and ã0i, respectively) is the ith follower’s
estimation of the leader’s generalized coordinate (deriva-
tive and acceleration, respectively), which is denoted by
q0, (q̇0 and q̈0, respectively). aij (i, j = 1, . . . , n) is the
entry of the adjacency matrix. α1, α2 and α3 are positive
constants, and sgn(·) is the signum function accordingly.

Lemma 2 [14,24] Suppose that in G, the leader has
directed paths to all the followers. Then, ‖q̃0i − q0‖ → 0
in finite time, if α1 > ‖q̇0‖, and the upper bound of the
settling time is denoted by T1. Similarly, ‖ṽ0i − q̇0‖ →

0 in finite time is denoted by T2, if α2 > ‖q̈0‖, and
‖ã0i − q̈0‖ → 0 in finite time denoted by T3, if α3 >

‖q(3)
0 ‖, i = 1, . . . , n.
Remark 1 The results in [14] can be extended to

the case in this paper, and the settling time would be

T1 =
max ‖q̄0i(0)‖∞
α1 − sup

t�0
‖q̇0‖ , T2 =

max ‖v̄0i(0)‖∞
α2 − sup

t�0
‖q̈0‖ , and T3 =

max ‖ā0i(0)‖∞
α3 − sup

t�0
‖q(3)

0 ‖
, where q̄0i = q̃0i − q0, v̄0i = ṽ0i − q̇0,

and ā0i = ã0i − q̈0, respectively.

3.2 Observer-controller design

Define the following auxiliary variables:

q̇ri � ṽ0i − β1

⎡
⎣ ∑

j∈Ni

aij(qi − qj) + ai0(qi − q0)

⎤
⎦ (5)

s̃i � q̇i − q̇ri = ˜̇ei + β1

[ ∑
j∈Ni

aij(qi − qj)+

ai0(qi − q0)
]

(6)

soi � ėoi + β2

∑
j∈Ni

aij(eoi − eoj), i = 1, . . . , n (7)

where β1 and β2 are positive constants, ˜̇ei � q̇i − ṽ0i,
eoi � qi− q̂i, and ėoi � q̇i− ˆ̇qi. Here q̂i (ˆ̇qi, respectively)
is the observation of the generalized coordinate (derivative,
respectively) of the agent i, aij (i, j = 1, . . . , n) is the en-
try of the adjacency matrix. Here, (6) and (7) can be writ-
ten in vector forms as

s̃ � ˜̇e + β1(H ⊗ Ip)e (8)

so � ėo + β2(L ⊗ Ip)eo (9)

where e � q − q0, e is defined as the position tracking
error relative to the leader, eo is the vector form of the ob-
servation error, and ˜̇e denotes the velocity errors between
the followers and the estimations of the leader.

Applying Property 3 to the term Mi(q̃0i)ã0i +
Ci(q̃0i, ṽ0i)ṽ0i + Gi(q̃0i) and combining system model
(1), we have

Mi(qi) ˙̃si + Ci(qi, q̇i)s̃i + ΔW̃i = τi − τ̃0i (10)

where

ΔW̃i = Mi(qi)q̈ri + Ci(qi, q̇i)q̇ri + Gi(qi)−
Yi(q̃0i, ṽ0i, ã0i)Θ i

τ̃0i = Mi(q̃0i)ã0i + Ci(q̃0i, ṽ0i)ṽ0i + Gi(q̃0i) =

Yi(q̃0i, ṽ0i, ã0i)Θ i
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The vector form of (10) is

M(q) ˙̃s + C(q, q̇)s̃ + ΔW̃ = τ − τ̃0. (11)

Lemma 3 Define s � ė + β1(H ⊗ Ip)e, where

ė = q̇ − q̇0, and ΔW � M(q)(q̈ − ṡ) + C(q, q̇)(q̇ −
s) + G(q) − Y (q0, q̇0, q̈0)Θ , there exist positive definite

functions b11, b′12, b′′12, b′13, b21, b
′
21, b

′′
22, b

′
23 such that the

following inequalities hold,

−sTΔW � β1s
TM(q)Hs − β2

1sTM(q)HTHe+

b11‖s‖2 + b12‖s‖‖e‖ + b13(‖s‖2‖e‖+
β1σ(H)‖s‖‖e‖2) (12)

−sT
o ΔW � β2s

T
o M(q)Ls − β2

2sT
o M(q)LTLe+

b21‖s‖‖so‖ + b22‖so‖‖e‖ + b23(‖s‖‖so‖‖e‖+
β2σ(L)‖so‖‖e‖2) (13)

where b12 = b′12 + β1σ(H)b′′12, b13 = β1σ(H)b′13,

b22 = b′22 + β2σ(L)b′′22, and b23 = β2σ(L)b′23, σ(X) de-

notes the maximum singular value of the matrix X . Please
refer to [25] for the details of the proof of Lemma 3.

To cope with the problem that the velocity of the fol-
lower is unavailable, the distributed velocity observers are
proposed as follows, in which only the local information
such as its own on-board measurements and communicat-
ing data from directly connected neighbors, is used.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ˆ̇qi = zi − β1

⎡
⎣ ∑

j∈Ni

aij(qi − qj) − ai0(qi − q0)

⎤
⎦ +

β2

∑
j∈Ni

aij(eoi − eoj) + k3eoi

żi = ã0i − k2(s̃i − soi) + k3β2

∑
j∈Ni

aij(eoi − eoj)

(14)
where the gains k2 and k3 are positive con-
stants. Note that the term s̃i − s0i = ˆ̇qi − ṽ0i + β1⎡
⎣ ∑

j∈Ni

aij(qi − qj) + ai0(qi − q0)

⎤
⎦ − β2

∑
j∈Ni

aij(eoi −

eoj), therefore the term s̃i − soi does not include any in-
formation of the derivatives of the followers’ generalized
coordinate [26]. Moreover, considering the fact that only
the local information is used in the observers, the velocity
observation can be realized in a distributed manner, which
has significant meaning for cooperative tracking under re-
alistic working conditions. Then, (14) can be written in a
vector form as{ ˆ̇q = z − β1(H ⊗ Ip)e + β2(L ⊗ Ip)eo + k3eo

ż = ã0 − k2(s̃ − so) + k3β2(L ⊗ Ip)eo

(15)

where ˆ̇q, z, eo, ã0, s̃ and so are, respectively, the col-
umn stack vectors of ˆ̇qi, zi, eoi, ã0i, s̃i and soi (i =
1, 2, . . . , n).

Based on the outputs of the estimators and velocity ob-
servers, here we use Yi0 to denote Yi(q̃0i, ṽ0i, ã0i) and the
distributed control law for the agent i can be designed as

τi = −K1i(s̃i − soi) + Yi0Θ̂ i − 2ΛiYi0Y
T

i0 ẽi, (16)

where K1i and Λi are symmetric positive-definite matri-
ces, ẽi � qi − q̃0i and Θ̂ i is the estimation of Θ i.

To cope with the parameter uncertainty in (10), the up-
date law of Θ̂ i is

˙̂
Θ i = −ΛiY

T
i0 (soi − s̃i) + 2Λ1/2

i Ẏ T
i0 ẽi − 2ΛiY

T
i0 ×

β1

⎡
⎣ ∑

j∈Ni

aij(qi − qj) + ai0(qi − q0)

⎤
⎦ ,

i = 1, · · · , n. (17)

The highlight of the proposed control algorithms and the
adaptive law is that the term s̃i−soi is elaborately designed
to compensate the unavailability of the velocity measure-
ments and ẽi is introduced to deal with the followers’ par-
tial accessibility to the leader.

Theorem 1 If Assumptions 1 and 2 hold, the gene-
ralized graph contains a directed spanning tree rooted by
the dynamic leader, and αi > ‖q(i)

0 ‖(i = 1, 2, 3). Then
using (4), (14), (16), (17) for (1), there exist parameters
β1, β2,Λ, K1i, k2 and k3 such that ‖qi(t) − q0(t)‖ → 0
and ‖q̇i(t) − q̇0(t)‖ → 0, i = 1, · · · , n, as t → ∞.

Proof First, in order to solve the problem that only a
subset of followers have access to the leader, the estimator
(4) is used. From Lemma 2, it can be guaranteed that all
the estimations of the leader’s states converge to the real
values in finite time. Therefore q̃0i = q0, ṽ0i = q̇0, and
ã0i = q̈0 when t � T � max{T1, T2, T3}. Hence

s̃i =si = q̇i−q̇0+β1

⎡
⎣ ∑

j∈Ni

aij(qi − qj) + ai0(qi − q0)

⎤
⎦

(18)
and (11) has the following form:

M(q)ṡ + C(q, q̇)s + ΔW = τ − τ0 (19)

where τ0 = YdΘ = M(q0)q̈0 + C(q0, q̇0)q̇0 + G(q0).
Then (15) can be written as

{ ˆ̇q = z − β1(H ⊗ Ip)e + β2(L ⊗ Ip)eo + k3eo

ż = q̈0 − k2(s − so) + k3β2(L ⊗ Ip)eo
.

(20)
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Also, the term s − so = ˆ̇qi − q̇0 +

β1

⎡
⎣ ∑

j∈Ni

aij(qi − qj) + ai0(qi − q0)

⎤
⎦−β2

∑
j∈Ni

aij(eoi−

eoj) does not include any followers’ velocity measure-
ments. When t > T , consider the following Lyapunov
function candidate

V (t) =
1
2
(−2Λ

1
2 Y T

d e + Λ− 1
2 Θe)T(−2Λ

1
2 Y T

d e+

Λ− 1
2 Θe) +

1
2
sTM(q)s +

1
2
sT

o M(q)so +
1
2
eTe (21)

where Λ � diag{Λ1, . . . ,Λn}, and Θe = Θ̂ − Θ is the
estimation error of Θ . Taking the time derivative of V (t)
follows that

V̇ (t) = (−2Λ
1
2 Y T

d e + Λ− 1
2 Θe)T(−2Λ

1
2 Y T

d ė−

2Λ
1
2 Ẏ T

d e + Λ− 1
2 Θ̇e) + sTM(q)ṡ +

1
2
sTṀ (q)s+

sT
o M(q)ṡo +

1
2
sT

o Ṁ (q)so + eTė. (22)

Combining (16) and (19), when t � T , notice that
q̃0i = q0, ṽ0i = q̇0, and ã0i = q̈0, thus the error dynamics
of the system can be written as

M(q)ṡ = −K1(s − so) − ΔW + YdΘe−

C(q, q̇)s − 2ΛYdY
T

d e. (23)

Differentiating the first equation of the observer (20),
and substituting the second one into it, we have

ṡo = ṡ − k2(so − s) − k3so. (24)

Note the fact that Θ̇e = ˙̂
Θ . Then, substituting (17),

(23) and (24) into (22), from Property 2, we can get

V̇ (t) = (−2Λ
1
2 Y T

d e + Λ− 1
2 Θe)T[−2Λ

1
2 Y T

d ė−

Λ
1
2 Y T

d (so − s) − 2Λ
1
2 β1Y

T
d (H ⊗ Ip)e]−

K1s
T(s − so) − sTΔW − sTYdΘe−

2ΛsTYdY
T

d e +
1
2
sT

o Ṁso − sT
o Cso+

sT
o Cso + sT

o [−K1(s − so) − ΔW+

YdΘe − C(q, q̇)s − 2ΛYdY
T

d e]−
k3s

T
o Mso − k2s

T
o M(so − s) + eTė. (25)

After performing some basic algebraic operations and
considering Lemma 3, (25) can be simplified as

V̇ (t) � β1s
TMHs − β2

1sTMHTHe + b11‖s‖2+

b12‖s‖‖e‖+ b13(‖s‖2‖e‖ + β1σ(H)‖s‖‖e‖2)+

β2s
T
o MLs − β2

2sT
o MLTLe + b21‖s‖‖so‖+

b22‖so‖‖e‖ + b23(‖s‖‖so‖‖e‖ + β2σ(L)×
‖so‖‖e‖2) − K1s

Ts − sT
o Cs + sT

o Cso+

K1s
T
o so − k2s

T
o Mso + k2s

T
o Ms−

k3s
T
o Mso + eTs − β1e

THe. (26)

To facilitate the subsequent analysis, the following
equalities are introduced to deal with the cross terms such
as ‖s‖‖e‖2 and ‖so‖‖e‖2.

‖s‖‖e‖2 = −1
2
‖e‖2(1 − ‖s‖)2 +

1
2
‖e‖2 +

1
2
‖e‖2‖s‖2

‖so‖‖e‖2 = −1
2
‖e‖2(1−‖so‖)2+

1
2
‖e‖2+

1
2
‖e‖2‖so‖2

(27)
Then, it can be deduced that

V̇ (t) � (p1 + b13‖e‖ +
1
2
b23‖e‖)‖s‖2 + (p2+

1
2
b23‖e‖ +

1
2
b23β2σ(L)‖e‖2)‖so‖2+

(p4 − 1
2
b23‖e‖)(‖so‖ − ‖s‖)2 + D (28)

where

p �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p1 = −λK1
+

1
2
kmk3 + ω1

p2 = −km(k2 + k3) + λK1 + ω2

p3 = −β1

[
σ(H) − 1

2
b13σ(H)

]
+ ω3

p4 = −1
2
β2kmσ(L) − 1

2
b21 − 1

2
kmk3

D =
[
− 1

2
β2

2kmλLTL − 1
2
β2

1kmλHTH − 1
2
− 1

2
b12

]
×

(‖s‖ − ‖e‖)2 − 1
2
β1b13σ(H)‖e‖2(1 − ‖s‖)2−

1
2
b22(‖so‖ − ‖e‖)2 − 1

2
β2b23σ(L)×

‖e‖2(1 − ‖so‖)2

σ(X) denotes the minimum singular value of the ma-
trix X . λX and λX denote the largest and the smallest
eigenvalues of the matrix X , respectively. From Assump-
tions 1 and 2 and Property 1, we can get that σ(C) is
bounded. And w1, w2, w3 in p are as follows:

w1 = β1kmσ(H) + b11 +
1
2
b12 +

1
2
β1b13σ(H)+

1
2
b21 +

1
2
β2kmσ(C) +

1
2
β2

1kmλHTH +
1
2

w2 =
1
2
b21 +

1
2
b22 +

1
2
b23σ(L) +

3
2
σ(C)+
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1
2
β2kmσ(L) +

1
2
β2

2kmλLTL

w3 =
1
2
β2

1kmλHTH +
1
2
β2

2kmλLTL+

1
2
β2b23σ(L) +

1
2
b21 +

1
2
b22 +

1
2
.

It is clear that D � 0, thus V̇ (t) � 0 if the following
inequalities hold:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 + b13‖e‖ +
1
2
b23‖e‖ � 0

p2 +
1
2
b23‖e‖ +

1
2
b23β2σ(L)‖e‖2 � 0

p3 � 0

p4 − 1
2
b23‖e‖ � 0

(29a)

(29b)

(29c)

(29d)

Obviously, p4 − 1
2
b23‖e‖ � 0 for ‖e‖ � 0. Note that

(29a) and (29b) contain the term ‖e‖ and ‖e‖2, they have
solutions only when

p1 � 0, p2 � 0. (30)

Combining (29) and (30) makes V̇ (t) be negative semi-
definite when the parameters satisfy the following inequa-
lities: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λK1
� 1

2
kmk3 + ω1

k2 + k3 � λK1

km
+

ω2

km

β1 � ω3

σ(H) − 1
2
b13σ(H)

(31a)

(31b)

(31c)

V̇ (t) � 0 implies that terms s, so, and e together with
their derivatives are bounded. By differentiating (25), we
can see that V̈ (t) is bounded. Thus V̇ (t) is uniformly con-
tinuous. It can be concluded from Barbalat’s Lemma [27]
that V̇ (t) → 0, as t → ∞, i.e., s(t) → 0, so(t) → 0, and
e(t) → 0, as t → ∞. Therefore, ‖qi(t)−q0(t)‖ → 0, and
‖q̇i(t) − q̇0(t)‖ → 0, i = 1, . . . , n, as t → ∞ �

Remark 2 Equation (9) can be written as ėo =
−β2(L ⊗ Ip)eo + so . Since the interaction of the agents
forms a directed spanning graph, we know from the Lasalle
invariance principle and the theory of input-to-state sta-
ble (ISS) [27] that the state eo would converge to zero if
so converges to zero. Therefore, we also have ‖q̇i(t) −
ˆ̇qi(t)‖ → 0, as t → ∞, which means that we can observe
the velocities only using position measurements.

Remark 3 It is worthy to mention that the term s̃i −
soi plays a critical role in the observer (14), the con-
trol algorithm (16), and the adaptive law (17). The elabo-
rately designed term s̃i − soi frees the use of velocity sen-
sors. Meanwhile, this term also introduces other sources

of velocity information, such as the follower itself and the
estimations of the leader, which facilitate the design of the
control law and the following stability analysis.

4. Simulation results

Numerical simulations are presented in this section to
demonstrate the effectiveness of the proposed control al-
gorithm. Consider four networked two-link manipulators
modeled by Euler-Lagrange equations, in which

Mi(qi) =
[

θi(1) + 2θi(2) cos(qi(2)) θi(3) + θi(2) cos(qi(2))
θi(3) + θi(2) cos(qi(2)) θi(3)

]

Ci(qi, q̇i) =[−θi(2)sin(qi(2))q̇i(2) −θi(2)sin(qi(2))(q̇i(1)+q̇i(2))
θi(2) sin(qi(2))q̇i(1) 0

]

Gi(qi) =
[

θi(4)g cos(qi(1)) + θi(5)g cos(qi(1) + qi(2))
θi(5)g cos(qi(1) + qi(2))

]

where qi � [qi(1), qi(2)]T, g = 9.8 m/s2 is the acce-
leration of gravity, θi � [θi(1), θi(2), θi(3), θi(4), θi(5)] =
[m1l

2
c1 + m2(l21 + l2c2) + J1 + J2, m2l1lc2, m2l

2
c2 +

J2, m1lc1 + m2l1, m2lc2]. For simplicity, we choose iden-
tical joint arms for the four followers. Let the masses of
link 1 and link 2 be, respectively, m1 = 0.5 kg, and
m2 = 0.4 kg, the lengths of link 1 and link 2 be, respec-
tively, l1 = 0.4 m, and l2 = 0.3 m, the distances of the
mass center of link 1 and link 2 between neighbors be, re-
spectively, lc1 = 0.2 m, and lc2 = 0.15 m. In addition, the
moments of inertia of link 1 and link 2 are, respectively,
J1 = 0.006 7 kg · m2, and J2 = 0.003 kg · m2.

The interaction topology between the followers and the
leader are shown in Fig. 1, in which only agent 1 can di-
rectly receive information form the leader. Here, an ar-
row from i to j denotes the agent j can receive infor-
mation form the agent i (i, j = 0, 1, . . . , 4). The rod-
shaped topology is the most sparse directed graph, which
implies that the minimum amount of information trans-
mits in this topology than that in other topologies with
the same number of agents. The initial positions of the
followers are chosen as qi(0) = [(π/7)i, (π/8)i]T, and
the velocity observations of the four followers ˆ̇q(0) are
set as [0, 0]T. Let the reference states of the leader be
q0(t) = [sin(t),− sin(t)]T, and hence the angular velocity
be q̇0(t) = [cos(t),− cos(t)]T. The control parameters are
set as α1 = α2 = α3 = 1.5, β1 = 5, β2 = 1, Λi = 0.2I2

and K1i = 12I2, k2 = 1, k3 = 12. Fig. 2–Fig. 4 illustrate
the evolution of the distributed tracking process. Fig. 2
shows the initial states of the agents. In Fig. 3, it can be
seen that agent 1 has almost caught up with the leader and
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others approach the leader gradually. Then, after about 2
s, all the followers can trace and follow the motion of the
leader, and then maintain the performance hereafter, which
is shown in Fig. 4, namely, they have realized target track-
ing.

Fig. 1 Network topology associated with leader 0 and four followers

Fig. 2 Motion of robotic arms at t = 0 s

Fig. 3 Motion of robotic arms at t = 0.3 s

Fig. 4 Motion of robotic arms at t = 10 s

Fig. 5–Fig. 6 show the variations of angle and angular
velocity during the tracking process. These figures indi-
cate that good tracking performance is achieved. Fig. 7–
Fig. 9 show the corresponding state errors during the whole
tracking process. From Fig. 7, it is found that the angle dif-
ferences between the followers and the leader converge to
zero after slight chattering of 2 s.

Fig. 5 Trajectories of angle qi(t)



8 Journal of Systems Engineering and Electronics Vol. 25, No. 3, June 2014

Fig. 6 Trajectories of angular velocity q̇i(t)

Fig. 7 Angle tracking errors between the followers and the leader

Accordingly, Fig. 8 illustrate the angular velocity dif-
ferences between the followers and the leader. Then, we
can easily draw the conclusion that the distributed track-
ing to a dynamic leader is achieved effectively by using
the proposed control laws. Besides, the errors between the
real values of the angular velocity and their observations
obtained by the followers are shown in Fig. 9, which imply
that the proposed distributed velocity observers yield ac-
curate observations, and it makes important sense to com-
pensate the absence of velocity measurements. All the sim-
ulation results demonstrate the effectiveness and feasibil-
ity of the proposed framework of the distributed observer-
controller.

In order to demonstrate the effectiveness of our pro-
posed method, some comparative simulations are also car-
ried out under the conditions in [13] which are more rigid
than ours. At the beginning of the tracking process, vibra-
tion occurs due to the output of the signum functions

Fig. 8 Angular velocity tracking errors between the followers and

the leader

Fig. 9 Angular velocity errors between the observations and the real

values

and the regulation of the observers. However after the dis-
tributed sliding mode estimators yielding precise estima-
tions of the leader’s states, the vibration vanishes and all
the followers can track the leader as accurately as that
in [13]. Due to the space limitations, the figures which
demonstrate the comparative results are not presented here.

5. Conclusion

The problem of distributed coordinated tracking for multi-
ple networked Euler-Lagrange systems with parameter un-
certainties has been investigated under the constraint that
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the leader is a neighbor of only parts of the follo-
wers on a directed graph containing a spanning tree. Well-
designed distributed velocity observers fully utilize all the
available local information and the estimated reference in-
formation to cope with the unavailability of velocity in-
formation. Consequently, a new framework of observer-
controller combined with the adaptive law is proposed
to solve the coordinated tracking problem by using only
position information. Several sufficient conditions which
guarantee the stability of the system are provided and the
effectiveness of the proposed control strategies is veri-
fied by simulation results. It should be pointed out that
we just solve the tracking problem with no-time delay
in the communication. Future works include the study
of the cooperative tracking of multiple Euler-Lagrange
systems with time delays under a switching directed
topology.
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