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Abstract This paper focuses on the consensus problem
of multiple high-order systems with uncertainties. Since
it is difficult to use matrix theory approaches to design
consensus controllers for a class of multiple high-order
uncertain nonlinear systems, in this paper a set of
consensus control laws are proposed by employing
adaptive control theory and a backstepping technique.
The distributed virtual control functions of the multi-agent
systems are elaborately constructed by only using their
local information in the recursive controller design
procedure. Furthermore, the asymptotic stability of the
overall interconnected system is proved relying on the
Lyapunov stability analysis method. Finally, simulations
are provided to verify the effectiveness of the control
algorithms.

Keywords Consensus, Backstepping, High-order
Nonlinear Systems, Multi-agent, Distributed Control

1. Introduction

Over the past decade in particular, the cooperative control
of multi-agent systems has received increasing attention
given the fact that many benefits can be obtained when

a single complicated agent is equivalently replaced by
multiple simpler agents. Numerous results have been
obtained to solve a variety of multi-agent cooperative
control problems [1-6,13-17]. In the distributed control
of a group of autonomous agents, the main objective
typically is to have the whole group of agents working in
a cooperative fashion throughout a distributed protocol.
These controllers are distributed in the sense that the
controller design for each agent only requires relative state
information between itself and its neighbours. Hence,
coordination refers to a close relationship among all
agents in the group where information sharing plays a
crucial role. The distributed control scheme has many
advantages in achieving cooperative group performances,
especially with low operational costs, fewer system
requirements, higher robustness, stronger adaptivity, and
flexible scalability. The control theory of multi-agent
systems can be applied in many practical engineering
applications, such as the cooperative control of unmanned
ground/air/underwater vehicles [7-9], distributed sensor
networks [10], aggregation and rendezvous control [11],
the attitude alignment of spacecraft [12], and so on.
Therefore, the cooperative control of multi-agent systems
has been widely recognized and will be universally
appreciated in the future.
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Among the existing works mentioned above, most
of them have studied only first- and second-order
dynamics. Recently, some researchers turned their focus
on higher-order multi-agent systems coordination. One
motivation for studying higher-order consensus comes
from observing the behaviour of flocks of birds [18]. It is
often noted that such flocks fly in formation, maintaining
a nominal separation from each other, but each travelling
with the same velocity vector. However, sometimes a
bird flock will abruptly change direction, perhaps when
one of them suddenly perceives a source of danger or
food. Clearly, the birds in this setting need to build
consensus as to not only their relative positions and
velocities, but also to their acceleration. In [19], Dong
considered a group of third-order nonlinear systems
with parameter uncertainties using a backstepping
technique and an adaptive control method. However,
the proposed control law does not work when the order
of systems is larger than three. It is worth noting that
the control algorithm in [19] cannot easily be extended
to high-order nonlinear systems with uncertainties at
each step. In [19], since the adaptation law (17) contains
its neighbours’ information, the control law (18) has
two-hop information. When the order of the system is
n, n − 1 hop information is needed to design control
laws. This is unavailable, obviously. In addition, in
many practical engineering applications, many systems
are modelled by higher-order dynamics, for example,
the jerk systems, described by third-order differential
equations [20]. A single-link flexible joint manipulator
is well modelled by a fourth-order nonlinear system
[21-23]. It is not acceptable to model the plant dynamics
with only single- or double-integrator dynamics. Hence,
it is particularly important to extend the coordination
problem from lower-order dynamics to higher-order
ones. Compared with the first-order and second-order
dynamics, the higher-order ones involve more details
relating to the interactions between the system dynamics
(states and their derivatives) and the communication
network. Up to now, most of the existing literature has
only been concerned the high-order integrators with a
linear strict-feedback form ([18,24-26],etc.), which are
mainly based on the matrix theory on graphs. In [18],
Ren et al. showed a matrix approach-based framework
for high-order integrators multi-agent systems. They
defined a class of l-order (l >= 3) consensus algorithms
and showed necessary and sufficient conditions under
which each information variable and their higher-order
derivatives converged to common values. Jiang [24]
investigated the consensus problem for multi-agent
systems with individual agents modelled by high-order
integrators under a fixed/switching topology and
zero/non-zero communication time-delays. In [25], the
consensus of high-order integrators multi-agent systems
with time-delays and switching topologies was studied.
The coordination of high-order linear systems with
disturbances was investigated in [26,27]. Discrete-time
high-order linear multi-agent systems control problem
was considered in [28], and the results for the general
high-order linear time-invariant (LTI) systems were
published in [29,30]. Huang et al. summarized a survey

of recent progress in the study of distributed high-order
linear multi-agent coordination in [15].

As for the consensus of multiple high-order nonlinear
systems, only a few results have been proposed.
Dong et al.[31] considered the tracking control problem.
Distributed robust/adaptive control laws were proposed
such that the states of each system converged to the
desired trajectory asymptotically. However, the model
of the systems is without uncertainties. Because of
the inherent characteristics of multiple linear systems,
matrix theory approaches are frequently used in stability
analysis. However, in many practical applications, the
dynamics of the systems are not only nonlinear but also
have uncertainties, thus solving consensus problems for
multiple high-order uncertain nonlinear systems, which
would make great sense for practical applications. Matrix
theory-based frameworks are not applicable in many
scenarios, especially for nonlinear systems. Thus, the
consensus control of high-order nonlinear systems with
uncertainties is more challenging than that of certain
high-order linear ones. The extension of adaptive control
to high-order dynamics is not straightforward because
of the growth in the order. The challenge is to make
sure that both the control protocols and the parameter
update laws are distributed - that is, they are allowed to
depend only on locally available information about the
agent and its neighbours. High-order systems contain
more states and their derivatives, so the design of adaptive
control becomes more complicated. This requires the
careful crafting of a suitable Lyapunov function which
automatically yields a distributed adaptive controller
that depends only on local information. In [32], Dong
first considered the adaptive consensus seeking of a
class of multiple nonlinear systems using backstepping
techniques. He considered two consensus problems, one
with a constant agreement value and another with a
reference system whose state is only available to a portion
of the agents.

In this paper, we consider a class of high-order nonlinear
multi-agent systems with uncertain parameters in the
nth-order terms. We tried to solve the control problem
under a distributed backstepping framework and we
propose a detailed design process. The key to designing
distributed controllers is the selection of a sequence
of suitable Lyapunov functions and the adaptive laws
that depend upon the communication network and the
dynamics of the system. The basis for the selection of
suitable graph-dependent Lyapunov functions was set out
in the backstepping technique on the graph. A distributed
recursive design approach is proposed to achieve the
consensus of multiple high-order nonlinear systems with
uncertainties. The main tasks of this paper include: 1)
This paper reviews the major results and progress in
distributed high-order multi-agent coordination. A type
of multiple high-order nonlinear system with uncertainties
is considered. 2) Distinct from the conventional
matrix theory-based frameworks, a systematic controller
design method/framework is proposed by combining a
distributed backstepping method with adaptive control
techniques. Furthermore, the convergence of the system
errors is proven rigorously by virtue of the Lyapunov
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stability theory and Barbalat’s lemma. 3) In the existing
literature, only chained systems whose order is lower than
three were used as the representative high-order systems,
while a multiple four-order nonlinear uncertain system is
implemented in this paper. A group of 11 agents is used to
verify the validity of the distributed controller.

The subsequent sections are organized as follows: In
section 2, the consensus problem is formally stated and
the background as well as the necessary preliminaries
concerning the control problem are given. In section 3,
the cooperative control laws are proposed relying upon the
backstepping method. The uncertainties of the parameters
are addressed by distributed adaptive control laws. In
section 4, simulations of the consensus control for multiple
four-order uncertain nonlinear systems are provided to
demonstrate the performance of the proposed control
laws. The last section concludes the paper.

2. Preliminaries and Problem Statement

In this section, basic graph theory for multi-agent system
control and the control problem are introduced.

2.1. Basic Graph Theory for a Multi-agent System

A team of m high-order nonlinear systems labelled as
systems 1 to m are considered. The communication
topology among the m systems is assumed to be
bi-directional and the interactions among the nodes are
represented by an undirected graph G = (V , E ,A), where
V is a set of the indices of the systems and E ⊆ V × V is
a set of edges that describe the communications between
the agents. If (i, j) ∈ E , then i is a neighbour of j, meaning
that system j can obtain information from system i. A is
a weighted adjacency matrix with non-negative adjacency
elements aij. Moreover, it is assumed that aii = 0. If the
state of system i is available to system j, then system i is
said to be a neighbour of system j. The neighbour set of
node vj is denoted by Nj, where j /∈ Nj.

Assumption 1. The communication graph G is fixed and
connected.

For the communication graph G with the weighted
adjacency matrix A = [aij]m×m, satisfying aij = aji > 0.
Its Laplacian matrix L = [Lij] is defined as:

Lij =




−aij if i �= j and i ∈ Nj
∑

l∈Nj

ajl if i = j

0 otherwise

(1)

2.2. Problem Statement

In this paper, we consider multi-agent systems formed
by a class of m high-order uncertain nonlinear systems in
chained form. The topology of the information exchange
among the systems is described by a graph G = (V , E ,A).
The novel dynamics of the j-th system is expressed as

follows:

ẋij = x(i+1)j (2)

ẋnj = uj + φT
j (x1j, x2j, . . . , xnj)θj (3)

where i = 1, 2, . . . , n − 1 denotes the orders of each
system, and j = 1, 2, . . . , m denotes the index number of
the systems, and xj = [x1j, x2j, . . . , xnj]

T ∈ Rn denotes
the state of the j-th system. uj ∈ R is the control
input of the j-th system. θj ∈ Rp denotes the uncertain
parameter vector, where p is a positive integer. The
function φj(x1j, x2j, . . . , xnj) ∈ Rp is smooth and assumed
to be known.

The aim of this paper is to design a control law for the j-th
system based on its own local states information when the
communication topology is fixed and connected, such that:

|x1j − x1l | → 0, as t → ∞ for j, l = 1, . . . , m. (4a)

xij → 0, as t → ∞ for i = 2, . . . , n. (4b)

3. Distributed Control Law Design

In this section, basic definitions are given and the local
neighbourhood virtual controllers are introduced. Some
requirements on the topology are laid out, and a series of
Lyapunov functions are given. Finally, a detailed design
procedure is given based on the recursive framework.

3.1. Local Neighbourhood Virtual Controllers

The high-order dynamics involve more details related to
the interactions between the system dynamics and the
communication network, which are reflected in the virtual
controls and the Lyapunov functions. The m systems
in (2)-(3) include strict-feedback forms. Owing to the
structural character of the lower-triangular strict-feedback
system, the high-rank state of each differential equation
is used as virtual control. In this way, the consensus
control problem for the higher order multiple systems can
be broken into a sequence of design problems for multiple
lower order subsystems. The extension of adaptive
backstepping control to distributed multiple higher-order
dynamics is not straightforward. In a cooperative adaptive
controller for multi-agent systems, it is required that not
only the backstepping control laws but also the adaptive
laws should be distributed and designed relying on their
local information.

Definition 1. We define a set of new variables z∗j =

[z1j, z2j, . . . , znj]
T with the aid of the backstepping technique as

follows:

z1j = x1j (5)

zij = xij − αij, 2 ≤ i ≤ n (6)

where j = 1, . . . , m. αij is the virtual control function which
is to be elaborately designed through the recursive backstepping
method.
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3.2. Recursive Controller Design Procedure

Distinct from centralized methods, the decentralized
recursive backstepping method using only the local
information is designed based on the sequence of virtual
controllers which are also necessarily designed relying on
local information. The aim of this work is to design the
virtual controller not only in a recursive way, like other
ordinary backstepping methods, but also in a distributed
manner, which makes the design procedure much more
difficult than the centralized methods. Furthermore, the
previously proposed design scheme cannot be extended
to deal with this case due to the complex intrinsic
nonlinearity defined in (3). The actual controllers uj can
be derived from αnj after αnj is designed. The detailed
recursive design procedure is given as follows.

In the first step, α2j is used to denote the first-order virtual
controller of system j. Using (2) for (5), we can derive that:

ż1j = z2j + α2j (7)

Consider the first-order error variable z1j = x1j of the
first-order subsystem of (2)-(3), and choose the Lyapunov
function candidate V1 as follows:

V1 =
1
2

zT
1∗z1∗ (8)

where z1∗ = [z11, z12, . . . , z1m]
T .

Taking the time-derivative of V1 and following (6) and (7),
we can obtain:

V̇1 =
m

∑
j=1

z1j(z2j + α2j) (9)

We design the first distributed virtual controller α2j as:

α2j = − ∑
l∈Nj

ajl(z1j − z1l) (10)

Note that ajl represents the weighted adjacency between
the neighbouring agents, and all the ajl hereinafter are
assumed to be 1. Nj denotes the neighbour set of the
j-th agent and no global information states are included in
α2j. Information in communication networks only travels
directly between immediate neighbours in the graph.
Nevertheless, if the graph is connected, then this locally
transmitted information ultimately travels to every agent
in the graph.

With the aid of eqn. (10), (7) can be written as:

ż1j = − ∑
l∈Nj

(z1j − z1l) + z2j (11)

and V̇1 can be written as:

V̇1 = −zT
1∗Lz1∗ +

m

∑
j=1

z1jz2j (12)

In the second step, and considering eqn.(6) and the
second-order of eqn.(2), it is possible to obtain:

ż2j = x3j − α̇2j

= z3j + α3j −
∂α2j

∂x1j
x2j − ∑

l∈Nj

∂α2j

∂x1l
x2l (13)

Remark 1. α3j is treated as a virtual controller for a
higher-order subsystem which would be designed to guarantee
the consensus of the first-order and the second-order subsystems
for the multiple high-order systems. This is to say that the
virtual controller α3j is to be designed such that lim

t→∞
(z1j −

z1l) = 0 and lim
t→∞

(z2j − z2l) = 0 for 1 ≤ j, l ≤ m.

Hence, we choose the second Lyapunov function
candidate V2 as:

V2 = V1 +
1
2

zT
2∗z2∗ (14)

where z2∗ = [z21, z22, . . . , z2m]
T . Taking the

time-derivative of V2 with respect to (12) and (13),
we can get:

V̇2 = V̇1 +
m

∑
j=1

zT
2j ż2j

= −zT
1∗Lz1∗ +

m

∑
j=1

z1jz2j +
m

∑
j=1

z2j

[
z3j + α3j

−
∂α2j

∂x1j
x2j − ∑

l∈Nj

∂α2j

∂x1l
x2l

]
(15)

In order to ensure that the time-derivative of the Lyapunov
function V2 is negative definite, an appropriate α3j should
be designed. We design the distributed virtual controller
α3j as:

α3j = −z1j − c2jz2j +
∂α2j

∂x1j
x2j + ∑

l∈Nj

∂α2j

∂x1l
x2l (16)

where c2j is the design parameter satisfying c2j > 0.
Please note that α3j only contains its own state information
and its neighbours’ information without using any global
information generally.

Remark 2. Note that the two items − ∂α2j
∂x1j

x2j and

− ∑
l∈Nj

∂α2j
∂x1l

x2l in eqn.(15) are directly cancelled by the

design of α3j. Furthermore, the item −z1j in α3j is designed

to make sure that
m
∑

j=1
z1jz2j in eqn.(15) can be eliminated. In

addition, the item −c2jz2j in eqn.(16) is designed to ensure the

negative definite of eqn.(15). The item
m
∑

j=1
z2jz3j in eqn.(17) will

be handled in the third step by choosing an appropriate virtual
controller α4j.

Therefore, by substituting (16) into (15), V̇2 can be
rewritten as follows:

V̇2 = −zT
1∗Lz1∗ − zT

2∗diag(c2∗)z2∗ +
m

∑
j=1

z2jz3j (17)

where c2∗ = [c21, c22, . . . , c2m]
T .
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In step i, 1 ≤ i ≤ n − 1. Following the design procedures
similar to the first and second steps, it is possible to obtain:

żij = x(i+1)j − α̇ij

= z(i+1)j + α(i+1)j −
i−1

∑
k=1

∂αij

∂xkj
x(k+1)j

−
i−1

∑
k=1

∑
l∈Nj

∂αij

∂xkl
x(k+1)l (18)

In (18), the virtual controller α(i+1)j which can guarantee
the consensus of the multiple i-rank (1 < i < n − 1)
subsystems should be designed such that lim

t→∞
(zkj − zkl) =

0 for 1 ≤ j, l ≤ m and 1 ≤ k ≤ n − 1, with the aid of the
Lyapunov function:

Vi = Vi−1 +
1
2

zT
i∗zi∗ (19)

Note that Vi−1 can be designed in the i − 1 step by the
recursive method. Taking the time-derivative of Vi by
considering Vi−1 in step i and (18), we can get:

V̇i = V̇i−1 +
m

∑
j=1

zij żij

= −zT
1∗Lz1∗ −

i−1

∑
j=2

zT
j∗diag(cj∗)z(i−1)∗

+
m

∑
j=1

z(i−1)jzij +
m

∑
j=1

zij

[
−

i−1

∑
k=1

∂αij

∂xkj
x(k+1)j

+z(i+1)j + α(i+1)j −
i−1

∑
k=1

∑
l∈Nj

∂αij

∂xkl
x(k+1)l


 (20)

Choose the virtual controller α(i+1)j as:

α(i+1)j = −z(i−1)j − cijzij +
i−1

∑
k=1

∂αij

∂xkj
x(k+1)j

+
i−1

∑
k=1

∑
l∈Nj

∂αij

∂xkl
x(k+1)l (21)

where cij is the design parameter, and satisfy cij > 0.
Substituting (21) into V̇i, we obtain:

V̇i = −zT
1∗Lz1∗ −

i

∑
j=2

zT
i∗diag(cj∗)zj∗ +

m

∑
j=1

zijz(i+1)j (22)

where ci∗ = [ci1, ci2, . . . , cim]
T .

In the last step, since the parameter θj is unknown,
the parameter adaptive law should be designed as well.
Differentiating znj = xnj − αnj, it is possible to obtain:

żnj = uj + φT
j θj − α̇nj

= uj −
n−1

∑
k=1

∂αnj

∂xkj
x(k+1)j −

n−1

∑
k=1

∑
l∈Nj

∂αnj

∂xkl
x(k+1)l

+φT
j θ̂j + φT

j θ̃j (23)

where θ̂j is the estimate of θj and θ̃j = θj − θ̂j is the estimate
error.

It is worth noting that in (23) the actual control
input uj is finally explicitly included, so uj not only
causes all the ranks of the multiple high-order nonlinear
systems to reach consensus but also deals with parameter
uncertainties by using the Lyapunov stability analysis
method.

We design the actual controller uj from (23) such that
lim
t→∞

(zkj − zkl) = 0, for 1 ≤ j, l ≤ m and 1 ≤ k ≤ n, with

the aid of the Lyapunov function candidate Vn as follows:

Vn = Vn−1 +
1
2

zT
n∗zn∗ +

1
2

m

∑
j=1

θ̃T
j Γ−1

j θ̃j (24)

Taking the time-derivative of Vn with respect to (22) and
(23), we obtain:

V̇n = V̇n−1 +
m

∑
j=1

znjżnj +
m

∑
j=1

θ̃T
j Γ−1

j
˙̃θj

= −zT
1∗Lz1∗ −

n−1

∑
j=2

zT
j∗diag(cj∗)zj∗ +

m

∑
j=1

z(n−1)jznj

+
m

∑
j=1

znj

[
uj + φT

j θ̂j + φT
j θ̃j −

n−1

∑
k=1

∂αnj

∂xkj
x(k+1)j

−
n−1

∑
k=1

∑
l∈Nj

∂αnj

∂xkl
x(k+1)l


+

m

∑
j=1

θ̃T
j Γ−1

j
˙̃θj (25)

We choose the adaptation law:

˙̂θj = Γjznjφj (26)

where Γj is a positive definite matrix. Note that znj only
contains the local information. In addition, the distributed
control law is:

uj = −z(n−1)j − cnjznj +
n−1

∑
k=1

∂αnj

∂xkj
x(k+1)j

+
n−1

∑
k=1

∑
l∈Nj

∂αnj

∂xkl
x(k+1)l − φT

j θ̂j (27)

where cnj is the design parameter satisfying cnj > 0. Note
that uj is designed relying on all the values of αij, where
1 ≤ i ≤ n.

Using (26) and (27) for (25), we can derive:

V̇n = −zT
1∗Lz1∗ −

n

∑
i=2

zT
i∗diag(ci∗)zi∗

+
m

∑
j=1

θ̃T
j (znjφj − Γ−1

j
˙̂
jθ)

= −zT
1∗Lz1∗ −

n

∑
i=2

zT
i∗diag(ci∗)zi∗ ≤ 0 (28)

Based on the above recursive backstepping analysis, we
can obtain the following theorem.

Theorem 1. Consider the multiple nonlinear systems
described by (2)-(3), when the communication topology of
the systems is fixed and connected, and choose the control
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law (27) and the adaptation law (26) for system j, where
1 ≤ j ≤ m, then it guarantees that the control objective
(4) holds and that θ̂j is bounded - that is, the consensus
of high-order nonlinear uncertain systems can be reached.
In the control laws, all the required information is local.
Moreover, each agent needs to know the total states of its
neighbours in order to be able to implement the control
law.

Proof. Given the above design procedure, define the
Lyapunov function candidate as (24), then we get (28).
Therefore, it follows that zi∗ ∈ L∞, θ̃j ∈ L∞ and θ̂j is
bounded according to the boundedness of θj. From (5),
(6) and (10), we get x1j, and α2j and x2j are bounded;
furthermore, α3j is bounded from (16), and following this
procedure, we claim that uj is bounded. Using the above

arguments, it follows that żi∗, ˙̃θj are all bounded from
(11), (13), (18), (23) and (26), and the definition of φj and
Γj. By differentiating (28), we can see that V̈ is bounded,
which means that V̇ is uniformly continuous. Hence, using
Barbalat’s lemma [20], it follows that V̇ → 0 as t → ∞,
i.e., lim

t→∞
zT

1∗Lz1∗ = 0 and lim
t→∞

zl∗ = 0m for 2 ≤ l ≤ m.

Using lim
t→∞

z2∗ = 0m, (7) becomes ż1j = − ∑
l∈Nj

ajl(z1j − z1l),

which implies that ẋ1j = − ∑
l∈Nj

ajl(x1j − x1l); thus, the

consensus is reached by Lemma 2.10 in [16], i.e., for all
x1j(0) and all i, j = 1, . . . , m, |x1i − x1j| → 0 as t → ∞.
We then obtain lim

t→∞
Lx1∗ = 0m and lim

t→∞
x1∗ = a1m for

some a ∈ R according to L1m = 0m, where 1m and 0m
denote the m× 1 column vector of all ones and zeros. Now,
denoting by x̄1 = 1

n ∑m
j=1 x1j the average of the first-order

states, we get ˙̄x1 = 1
n ∑m

j=1 ẋ1j = − 1
n 1T

mLx1∗ = 0, so that
˙̄x1 = 1

n ∑m
j=1 x1j(0), which means a = 1

n ∑m
j=1 x1j(0), and

the average consensus of the first-order states has been
reached. When lim

t→∞
(x1i − x1j) = 0, we get α2j → 0 as

t → ∞; thus, x2j → 0 will hold from (6) and (10). Following
this step, we can further obtain that xij → 0 as t → ∞ for
i = 3, . . . , n.

Remark 3. By considering the structural characteristics of the
system, the main idea of our proposed method is to break a
huge consensus problem with the multiple high-order nonlinear
systems into a sequence of recursive design problems with
lower-order multiple subsystems based on the backstepping
frameworks. In each step of the design procedure, only local
information is used to design the virtual controller, which
makes it more difficult to find the appropriate controllers, but
consequently the resulting actual controller and the parameter
adaptive law can be obtained in a distributed manner, which
overcomes the main drawbacks of the ordinary backstepping
methods in which global state information must be used.

Remark 4. If unknown but bounded disturbances dj are taken
into account in each subsystem, a similar analysis to that of
Theorem 1 can be performed:

V̇n = −zT
1∗Lz1∗ −

n−1

∑
i=1

zT
i∗diag(ci∗)zi∗ +

m

∑
j=1

znjdj (29)

The disturbances can be rejected by adding a robust
compensation term ucj = d̄jsgn(znj) to the control law (27),

Figure 1. Communication network G of the multi-agent system

where d̄j > 0 is the upper bound of dj and ’sgn’ is the sign
function; thus, the same result can be obtained as for Theorem 1.
Since the use of the sign function may cause undesirable control
chatting, we replace it by a saturation function sat(znj), where:

sat(znj) =

{
sgn(znj), if|znj/ε j| ≥ 1
znj/ε j, if|znj/ε j| < 1 (30)

ε j > 0 denotes the boundary layers. Notice that when
the saturation functions are used, the system errors can
only be guaranteed to converge to the bounded layers with
corresponding small tracking errors rather than zero, but the
practical advantages may be significant.

Remark 5. In the current paper, it is assumed that the
communication topology is bi-directional. If the communication
graph is directed and contains a spanning tree, then all the
eigenvalues of the weighted Laplacian L have a non-negative real
part [21]. Thus, similar consensus algorithms can be extended
to a directed graph - the proof is similar to the proof of Theorem
1 and we omit the detailed steps due to space limitations.

4. Simulation

In this section, some simulation experiments are presented
to verify the theoretical analysis. In order to show the
advantage of the proposed control law over those in the
existing literature (in which only multiple three-order
nonlinear systems with a chained form are commonly
applied for simulations), in this paper, multiple uncertain
nonlinear systems with four-orders are applied. The
models of the systems are defined by:

ẋ1j = x2j

ẋ2j = x3j

ẋ3j = x4j

ẋ41 = u1 + sin(x11)θ1

ẋ42 = u2 + [x12 + sin(x22)]θ2

ẋ43 = u3 + x13θ3

ẋ44 = u4 + x14θ4

ẋ45 = u5 + sin(x15)θ5

ẋ46 = u6 + sin(x16)θ6

ẋ47 = u7 + x17θ7

ẋ48 = u8 + x18θ8

ẋ49 = u9 + x19θ9

ẋ4,10 = u10 + x1,10θ10

ẋ4,11 = u11 + sin(x1,11)θ11

where 1 ≤ j ≤ 11 and θj are unknown parameters.

Consider an 11-node undirected graph as described in
Figure 1. According to the communication network G,
each individual agent can only exchange information
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Figure 2. Response of x1j for 1 ≤ j ≤ 11
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Figure 3. Response of x2j for 1 ≤ j ≤ 11

with its neighbouring agents. In this case, the unknown
parameters are assumed to be θ1 = 1, θ2 = 1, θ3 =
3, θ4 = 4, θ5 = 2, θ6 = 1, θ7 = 1, θ8 = 1, θ9 = 1, θ10 =
1, θ11 = 1.. Note that the communication graph G satisfies
Assumption 1. Furthermore, the corresponding adjacent
weights between agents are assumed to be 1, and all the
others are 0. The initial conditions of the systems can be
chosen as: x11 = 1.1, x21 = 2, x31 = 1, x41 = −0.5, x12 =
−0.5, x22 = 1, x32 = 3, x42 = −1, x13 = −1.4, x23 =
−1, x33 = 2, x43 = 1, x14 = −2.1, x24 = −1, x34 = 2, x44 =
1, x15 = 1.9, x25 = 1.8, x35 = 0, x45 = −0.5, x16 = 1.7, x26 =
1, x36 = 0, x46 = 1, x17 = −0.3, x27 = 1, x37 = 0, x47 =
1, x19 = 0.3, x29 = −0.1, x39 = 0, x49 = 0.01, x1,10 =
−0.2, x2,10 = 0, x3,10 = 0.01, x4,10 = 0, x1,11 = −0.2, x2,11 =

0, x3,11 = 0, x4,11 = 0.5, θ̂1 = 1, θ̂2 = 1, θ̂3 = 1, θ̂4 =

−5, θ̂5 = −6, θ̂6 = 1, θ̂7 = 1, θ̂8 = 1, θ̂9 = 1, θ̂10 = 1, θ̂11 =
1. The consensus control laws can be obtained by Theorem
1 in which appropriate values are designed for the control
parameters Γj and cij, 1 ≤ j ≤ 11, 1 ≤ i ≤ 4. The response
values of the states and the controller will be displayed as
follows:

In this simulation example, as shown in Figure 1, agents
four and six are the key nodes in the communication
network, both of which have four neighbouring agents.
Therefore, the two agents’ states (as can be seen by
the green and pink lines in Figure 2 to Figure 5) and
the control laws (the green and pink lines in Figure 6
to Figure 7) change more dramatically than the other
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Figure 4. Response of x3j for 1 ≤ j ≤ 11
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Figure 5. Response of x4j for 1 ≤ j ≤ 11
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Figure 6. Response of uj for 1 ≤ j ≤ 11

nodes. Figures 2-5 show the evolution of the states.
Clearly, the position states of all 11 agents ultimately
reach consensus. It can be seen from Figure 6 that the
control input uj of each system converges to zero as the
consensus is achieved. Figure 7 shows the estimation
of the unknown parameters θj, 1 ≤ j ≤ 11 by the
adaptive law in (31) and the values of them converge to
[2.5542, 2.4561, 2.7336, 0.9250, 7.5837, 6.3846, 0.6568, 0.6104,
0.2174, 1.1779, 1.2443]T . We proved the boundedness of
the estimates and have illustrated the efficiency of the
adaptation law in the simulation, which can be seen from
Figure 7. The first-order states converge to the average of
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Figure 8. A linear communication network for the multi-agent
system
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Figure 9. Response of x1j for 1 ≤ j ≤ 4, according to Figure 8

their initial values, while all the other states converge to
zero.

A linear network (as shown in Figure 8) is the one which
induces the slowest response, because the information
needs to propagate from one side of the network to the
other. In this case, the simulation (as shown in Figure
9) can also verify the same result. It can be seen that
the control objective (4) holds. Therefore, the distributed
consensus control laws in Theorem 1 are effective.

5. Conclusion

This paper discussed the consensus control problem of
a type of multiple high-order nonlinear system with
uncertainties. We proposed a distributed backstepping
design method that interlaces the elaborate design of a
suite of Lyapunov functions with the design of virtual
feedback control. The controller design problem for the
high-order multiple systems was broken into a sequence
of design problems for lower-order subsystems. More
specifically, a distributed consensus control approach
under a fixed and undirected communication graph was

devised and distributed backstepping techniques were
utilized to construct the virtual intermediate control
functions. Finally, simulations with multiple four-order
uncertain nonlinear systems were provided to show
consistency with the theoretical results. The design
techniques herein can be applied to a wide class of
multiple high-order nonlinear systems with uncertainties.
Since time-varying and a switching communication
topology are commonly applied in the real-world, research
into these problems would be very interesting and
meaningful. Further work includes extending the result
to cases when there exist communication delays between
systems, where the states are not available and when the
high-order nonlinear system has uncertainties at each step.
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