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Abstract: The optimal path planning for fixed-wing unmanned aerial vehicles (UAVs) in multi-target surveillance tasks (MTST) in 
the presence of wind is concerned. To take into account the minimal turning radius of UAVs, the Dubins model is used to 
approximate the dynamics of UAVs. Based on the assumption, the path planning problem of UAVs in MTST can be formulated as a 
Dubins traveling salesman problem (DTSP). By considering its prohibitively high computational cost, the Dubins paths under 
terminal heading relaxation are introduced, which leads to significant reduction of the optimization scale and difficulty of the whole 
problem. Meanwhile, in view of the impact of wind on UAVs’ paths, the notion of virtual target is proposed. The application of the 
idea successfully converts the Dubins path planning problem from an initial configuration to a target in wind into a problem of 
finding the minimal root of a transcendental equation. Then, the Dubins tour is derived by using differential evolution (DE) algorithm 
which employs random-key encoding technique to optimize the visiting sequence of waypoints. Finally, the effectiveness and 
efficiency of the proposed algorithm are demonstrated through computational experiments. Numerical results exhibit that the 
proposed algorithm can produce high quality solutions to the problem. 
 
Key words: unmanned aerial vehicle; path planning in wind field; Dubins traveling salesman problem; terminal heading relaxation; 
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1 Introduction 
 

The application of unmanned air vehicles (UAVs) in 
both civilian and military fields has experienced a 
remarkable rise of attention in recent years. Path 
planning for UAVs is a critical issue for their 
autonomous control which has been widely studied under 
specific backgrounds [1−3]. When UAVs perform MTST, 
collecting information from multi-target is a key problem, 
and the UAVs need to traverse through all the targets as 
quickly as possible. Different from the euclidean 
travelling salesman problem (ETSP), in order to make 
the planned path for UAVs flyable, kinematic constraints 
of UAVs should be considered in path planning. In this 
work, Dubins vehicle model is used to describe the 
aerodynamics of UAVs satisfying the following 
constraints [4].  
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where (x, y) and θ specify the planar position and the 
heading of the UAV, respectively, a state (x, y, θ) is 
termed as a configuration, v is the speed of the UAV, r is 
the minimal turning radius, and u is the control input. 

It is known that there exist six possible shortest path 
patterns, called Dubins paths, between any two 
configurations: LSL, RSR, LSR, RSL, LRL and RLR, 
where L means turning left with the minimal turning 
radius (u=1), R means turning right with the minimal 
turning radius (u=−1), and S means flying along a 
straight line (u=0), respectively [4]. Figure 1 depicts the 
six possible shortest Dubins paths for a simple example. 
It is clear that the Dubins distance between two 
configurations depends not only on their relative position, 
but also on their headings. 

It is known from above that, in order to get a 
Dubins tour, both the visiting sequence and headings of 
waypoints should be determined. Due to the strong 
coupling between the visiting sequence and headings of 
waypoints, some researchers employed decoupling 
methods to solve DTSP. TANG and ÖZGÜNER [5] 
proposed a heuristic method to determine the sequence 
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Fig. 1 Six possible shortest Dubins paths between two 

configurations 

 
of waypoints, then, a gradient based approximation 
algorithm was applied to optimize the headings. 
MACHARET et al [6] used the order obtained by solving 
an angular-metric TSP as the sequence of DTSP, and an 
optimization method called C-GRASP was used to 
calculate the headings. SAVLA et al [7] identified the 
visiting sequence of waypoints by solving the 
corresponding ETSP, and a simple rule called alternating 
algorithm (AA) was used to obtain the tour. LENY et al 
[8] made an analysis and comparison of some recently 
proposed decoupling methods through corresponding 
hard instances. The performance of decoupling methods 
greatly depends on the similarity between Dubins 
distance and other approximate distance metrics. Some 
researchers transformed DTSP to TSP which can be 
easily solved by some prevailing TSP solvers such as 
LKH [9]. LENY [10] transformed the problem into a 
generalized TSP (GTSP) by sampling the headings of 
waypoints and then further converted it into an 
asymmetric travelling salesman problem (ATSP) based 
on noon-bean transformation. The precision of the 
solutions obtained by the transformation algorithm is 
closely related to the density of heading sampling. Some 
researchers solved the problem directly. YU and HUNG 
[11] adopted genetic algorithm to optimize the Dubins 

tours based on the integral solution encoding using both 
visiting sequence and headings of the waypoints. In 
addition, BOISSONNAT and BUI [12] conducted some 
researches on the optimal Dubins paths between two 
points without terminal heading constraint. RATHINAM     
et al [13] solved the DTSP based on the idea proposed in 
Ref. [12] where only the sequence of waypoints should 
be optimized, which can greatly reduce the optimization 
scale. Though it cannot guarantee the optimality of the 
solution, it makes every subpath of the tour optimal in 
the sense of terminal heading relaxation. 

A lot of studies have been done on DTSP. On the 
contrary, there is very little research considering the 
impact of environmental factors (e.g., wind) on the paths 
especially for small UAVs. MCNEELY and IYER [14] 
presented conclusions on the existence and uniqueness of 
minimum-time solutions for a Dubins vehicle flying in 
wind field, and an iterative method used to calculate the 
solution was given. MCGEE et al [15] introduced the 
notion of virtual target to deal with the effect of wind on 
UAVs’ paths, but it needs to calculate ten possible 
candidate paths for every pair of configurations. MCGEE 
and HEDRICK [16] assumed the visiting sequence was 
known, and the Dubins tour was obtained using the 
method described in Ref. [15], but knowing the visiting 
sequence is not always possible in practice. TECHY and 
WOOLSEY [17] studied the problem from a geometric 
point of view and gave the solution to the optimal 
Dubins path planning problem in wind. 
 
2 Problem formulation 
 
2.1 Optimization model of DTSP 

To obtain a Dubins tour, both the visiting order and 
headings of waypoints should be determined. Assume 
that there are N points to be visited, which are denoted 
by P1, P2, P3 … , and PN, respectively. A general 
mathematical formulation of the DTSP is given as 
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where 1 2[ ,  ,  ...,  ]( {1,  2,  ,  } andN i i js s s s s N s s     
( ))i j  and 1 2[ ,  ,  ...,  ]Nh h h h  ( [0,  2π))ih   are the 

permutation of waypoints and the headings of the UAV 
at these waypoints, respectively. 1(( ,  ),  ( ,  i i is s sd p h p   

1 ))ish  is designated as the Dubins distance between the 
configurations ( ,  )i is sp h  and 1 1( ,  ).i is sp h   Obviously, s is 
a combinational variable while h is a continuous variable, 
which makes the DTSP a hybrid-variable optimization 
problem with 2N variables. The simultaneous 
optimization of two different types of variables brings 
great difficulty to the solving of the problem, and new 
algorithms have to be designed. 
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2.2 Dubins paths in sense of terminal heading 
relaxation 
BOISSONNAT and BUI [12] studied the 

accessibility region for a Dubins car from a given 
configuration within limited time, where the optimal 
Dubins paths from an initial configuration to a target 
with free terminal heading were presented. As shown in 
Fig. 2, S is the initial position, and the initial heading is 
along Y-axis. Denote CR and CL as the right turning circle 
and the left turning circle with minimal turning radius at 
the initial configuration, and OL and OR as their 
corresponding centers, respectively. Due to the symmetry 
of Dubins paths about the Y-axis, we restrict our study to 
the points in the right-half plane in the rest of the work. 
The following conclusions can be obtained. 
 

 
Fig. 2 Dubins paths under terminal heading relaxation 

 
1) For the points outside CR (e.g., the point T1 in   

Fig. 2), the pattern of optimal path is RS. 
2) For the points inside CR (e.g., the point T2 in  

Fig. 2), the pattern of optimal path is LR. 
3) For the points positioned on the Y-axis (e.g., the 

point T3 in Fig. 2), the pattern of optimal path is LS or 
RS, whose length of corresponding Dubins paths is the 
same. 

4) For the points positioned on CR (e.g., the point T4 
in Fig. 2), the pattern of optimal path is simplified to R. 
 
2.3 Optimization model of DTSP based on terminal 

heading relaxation 
Based on terminal heading relaxation, only the 

visiting sequence of waypoints should be determined, 
which can reduce the solution space by half and avoid 
optimizing two different types of variables 
simultaneously. By using the Dubins paths under 
terminal heading relaxation, the optimization model of 
DTSP can be described as 
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where 1

ˆ(( , ),  )i i is s sd p h p   specifies the Dubins distance 

from the configuration ( ,  )i is sp h  to the target 1isp   under 
terminal heading relaxation. In the sense of terminal 
heading relaxation, the heading at the target is 
determined once the initial configuration is given. 
Compared with the problem given in Section 2.1, the 
optimization scale of the whole problem decreases from 
2N to N, which can effectively reduce the computational 
complexity. 
 
3 Dubins path planning in wind under 

terminal heading relaxation 
 

Environmental factors (e.g., wind) can make a great 
impact on UAVs’ paths especially for small UAVs. The 
dynamics of UAVs in wind can be described 
approximately as [15] 
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where vw is the speed of wind, vwx and vwy are the speed 
components imposed on UAV by wind along X-and 
Y-axes, respectively. Besides, it is reasonable to assume 
that vw<v. 
 
3.1 Problem transformation with notion of virtual 

target 
To plan the path from an initial configuration to a 

target in wind, a virtual target (VT) is introduced [15]. Its 
initial position is the same with the target and velocity is 
equal and opposite to that of the wind. Based on the idea, 
the problem is converted into an interception problem 
between the UAV and VT without wind. 

As described in Ref. [15], the VT moves along the 
line in the opposite direction of wind. Any point P(d) 
along the line can be expressed by the variable d which is 
the distance to the initial target position. Denote T1(d) as 
the time that the UAV needs to spend to arrive at the 
point P(d), and by T2(d) as the time that the VT needs  
spend to arrive at the point P(d). The solution d* to the 
equation T1(d)=T2(d) means that the UAV can intercept 
with the VT at the point P(d*). Assume that the 
coordinates of the target are (xt, yt). Then, we have 

 
wywx

w w
( ) , ( )x t y t

vv
P d = x d P d = y d

v v
   

 
where (Px(d),Py(d)) are the coordinates of the VT after it 
moves distance d. 
 

1 2
w

( )
( ) ( )

D d d
T d = T d =

v v
                                         (5) 

  
where D(d) is the Dubins distance from the initial 
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configuration to P(d). So, the optimal path planning 
problem from an initial configuration to a target in wind 
can be solved by finding the minimal root of the equation. 
It is observed from Ref. [12] that D(d) may be 
discontinuous, which makes Eq. (5) a discontinuous 
transcendental equation. In the following, the detailed 
method to find the minimal root of the equation is 
described. 
 
3.2 Dubins distance from configuration to line 

In the following, we present some basic conclusions 
which are essential for further analysis of Eq. (5). 

Definition 1: The Dubins path from a configuration 
to a line (DPCL) refers to the Dubins path with shortest 
Dubins distance from the configuration to any point on 
the line in the sense of terminal heading relaxation. And 
the length of the DPCL is termed as Dubins distance 
from the configuration to the line (DDCL). 

Lemma 1: If the line does not intersect with CR or 
CL corresponding to the configuration, the pattern of 
DPCL is RS, and the straight part of DPCL is 
perpendicular to the line. 

As shown in Fig. 3(a), the DPCL in this condition is 
depicted by the red line. 

Remark 1: If there exist two points on the line 
whose straight parts of corresponding Dubins paths from 
the configuration are both perpendicular to the line, the 
shorter one will be selected as the DPCL. 

As shown in Fig. 3(b), the straight parts of optimal 
Dubins paths corresponding to points A1 and A2 are both 
perpendicular to the line L. Apparently, the Dubins 
 

 
Fig. 3 Schematic of Dubins path from configuration to line in 

two different scenarios: (a) Scenario 1; (b) Scenario 2 

distance from the configuration to A2 is shorter than that 
to A1, so the Dubins path from the configuration to A2 is 
the DPCL. 

Theorem 1: Given a line which is parallel to Y-axis 
but does not intersect with CR or CL, we denote P0 as the 
point whose corresponding Dubins path from the 
configuration is the DPCL. It is also assumed that the VT 
is initially located at point P0. When the VT moves along 
the line from P0, the Dubins distance D(d) from the 
configuration to the VT will increase. Besides, the 
derivative of D(d) with respect to d will also increase, 
and lim ( ) 1.d D d    

Corollary 1: If a line intersects with CR or CL, the 
point on the line corresponding to DPCL does not fall 
within CR or CL. 

The proofs of Lemma 1, Theorem 1 and Corollary 
1 are presented in Appendix. 
 
3.3 Analysis of Eq. (5) 
3.3.1 Case 1: Virtual target path (VTP) does not intersect 

with CR or CL 

Remark 2: Let 1 2( ) ( ) ( ).T d T d T d   T(d) is 
continuous when the VTP does not intersect with CR or 
CL, and 
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Theorem 2: The equation T(d)=0 has one and only 

one solution d* using optimal Dubins path, and 
 

1 1*
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It means that the UAV can only intercept with the 

VT at a unique position using optimal Dubins path. 
The proof for Theorems 2 is presented in 

Appendix. 
3.3.2 Case 2: Virtual target path (VTP) intersects with CR 

or CL 
Theorem 3: Denote dc as the Euclidean distance 

from the initial position to the target, and it is assumed 

that 
w

c 2 (1 π ).
v

d r
v

   Denote d′ as the distance that the 

VT moves when it intersects with CR or CL for the first 
time, the minimal solution d* to the equation T(d)=0 
satisfies 
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Proof: It is obvious that c 2 ,d d r    so 2 ( )T d    
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circle which means 1
2π

( ) .
r

T d
v

   According to the 

conclusion of Remark 2, it can be known that the 
solution to the equation must lie within the interval 

 0,  .d   

From the conclusion of Theorem 2, we have 
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Proof end. 
Theorem 3 proves that if the Euclidean distance 

from the initial position to the target satisfies 

w
c 2 (1 π ),

v
d r

v
   then the UAV can intercept the VT 

before it intersects with CR or CL. Otherwise, the 
circumstance will be more complicated. On the basis of 
the conclusions of Ref. [12], it is clear that traversing 
through the boundaries of CR or CL above X-axis of the 
VT will make D(d) discontinuous at the point on the 
circle, which leads to the discontinuity of T(d) and may 
result in that there is no solution to Eq. (5) using optimal 
Dubins paths. When the VTP intersects with CR or CL, it 
can be divided into some segments by the circles. We 
separately calculate the solution on the segments along 
the VTP until one is attained. Two typical cases in which 
using optimal Dubins path cannot generate feasible 
solutions to Eq. (5) are illustrated as follows. 

Case A: As shown in Fig. 4(a), the red line 
represents the VTP and it intersects with CR. When the 
VT moves from the interior of CR to the exterior through 
the point P, the Dubins distance D(d) is shortened 
suddenly. As shown in Fig. 4(b), it is apparent that there 
are no intersection points between T1(d) and T2(d). In this 
case, the UAV should fly along a non-optimal Dubins 
path to meet the VT. Next, we focus on the path 
generation which can ensure the existence of the solution 
to Eq. (5). 

For the point T shown in Fig. 5(a), the optimal 
Dubins path pattern is RS while there exist countless 
non-optimal paths. In this work, two non-optimal paths 
RLbig and RLsmall depicted in Fig. 5(a) are selected as 
candidates. 

Theorem 4: When the case shown in Fig. 4(a) 
occurs, one of the two non-optimal paths RLbig and 
RLsmall can make the UAV intercept the VT. 

Proof: As shown in Fig. 5(b), the target position is 
denoted by the red dot, and the points P1 and P2 on the 
VTP satisfy 1 1TP d  and 2 2 ,TP d  respectively. 
According to the relationship shown in Fig. 4(b), it is 
clear that big1 1 RL 2 1( ) ( )T d T d  and small1 1 RL 2 1( ) ( ).T d T d  

However, it can be seen that the two non-optimal paths 
RLsmall and RLbig become the same at point P2 which 
means big small1 2 RL 1 2 RL( ) ( ) .T d T d  So, there exists a 

*d   

 

 
Fig. 4 Schematic diagram of Case A: (a) Scenario that VTP 

intersects with CR (The red line represents VTP); (b) 

Relationship between T1(d) and T2(d) using optimal Dubins 

paths based on terminal heading relaxation in Case A 
 

 
Fig. 5 Non-optimal Dubins paths in Case A: (a) Two 

non-optimal paths RLbig and RLsmall; (b) Two points P1 and P2 
satisfying 11 dTP   and 22 dTP    
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Fig. 6 Schematic diagram of Case B: (a) Scenario that VTP 

intersects with both CR and CL (The red line represents VTP); 

(b) Relationship between T1(d) and T2(d) using optimal Dubins 

paths based on terminal heading relaxation in Case B 

 

 
Fig. 7 Non-optimal Dubins paths in Case B 

 

1 2( ,  ]d d  satisfying big small
* *

1 RL RL 2( ) ( ).orT d T d  The 
process is presented by red dashed lines in Fig. 4(b). 

Case B: If the VTP intersects with both CR and CL, 
then the VTP will be divided into five parts. As shown in 
Fig. 6(a), the intersection points between VTP and the 
turning circles are indicated by the distance that the VT 
moves from the initial target position. For the first three 
parts of the VTP, the method introduced above is adopted 
to calculate the solution. If there is no solution on the 
first three parts, we consider the fourth part. If 

1 2( ) ( )T d T d  holds for 3 4( ,  ),d d d  the case is similar 
to case A. But if 1 2( ) ( )T d T d  holds for 3 4( ,  )d d d  

shown in Fig. 6(b), the UAV needs to fly along a longer 
path. For simplicity, we introduce another non-optimal 
Dubins path RSnopt for the points satisfying d>d2 which is 
shown in Fig. 7. According to the analysis in Section 

3.3.1, it can be readily demonstrated that the UAV can 
intercept the VT by using this path. 
 
3.4 Root-finding method 

After determining the path pattern that the UAV 
intercepts the VT, a bisection algorithm is used to 
calculate the approximate numerical solution to the 
equation, as outlined in the following. 

Given the initial solution interval [a, b], the detailed 
steps of the bisection algorithm to calculate the solution 
are as follows: 

Step 1: Find the midpoint c=(a+b)/2 and calculate 
the value of T(c). 

Step 2: If sign (T(a)·T(c))=1 holds, the new solution 
interval changes to [c, b], otherwise take [a, c] as the 
new interval. 

Step 3: Repeat steps 1 and 2 until the desired 
accuracy is derived. 

Apparently, the accuracy of the solution depends on 
the number of iterations, which can reach (b−a)/2N after 
N iterations. According to the solution obtained by the 
bisection algorithm, the UAV can plan its path in wind 
which leads it to reach the target. 
 
4 Optimization algorithm 
 
4.1 Encoding 

Random key is used to encode the visiting sequence 
of waypoints. A random key vector corresponds to a 
visiting order of waypoints [18]. The random key vector 
is sorted and the indexes of sorted elements in the 
original vector represent the visiting order in the tour. 
Now, a simple example is given to illustrate its principle. 
For a permutation problem with five points, a random 
key vector [0.5 0.2 0.4 0.7 0.6] is sorted in an ascending 
order as [0.2 0.4 0.5 0.6 0.7], the indexes of all elements 
in the original vector are 2, 3, 1, 5 and 4, respectively. So, 
the visiting order of the five points is 2-3-1-5-4. 
 
4.2 Differential evolution algorithm 

Differential evolution is a population based global 
optimization algorithm which shares the same 
framework with genetic algorithms [19]. Due to its high 
robustness and quick convergence speed, it has been 
widely used in scientific and engineering problems. 
Various mutation strategies such as DE/rand-to-best/1 
and DE/best/2 have been developed to solve different 
problems. Now, the most successful DE variant, 
DE/rand/1, is described as follows. 

It first randomly generates a population  

 , 1 , 2 , P( ,  ,  ,  ) | 1,  2,  ,  ,i i i i Dx x x i N  x  where D 
is the dimension of the problem and NP is the population 
size. The main operations include mutation, crossover 
and selection. 

1) Mutation: For each target vector G
ix  
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P( 1,  2,  ,  ,i N   G is the current generation index), a 
mutant vector is generated as follows. 
 

)(
321

G
r

G
r

G
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G
i F xxxv                                        (10) 

 
where r1, r2 and r3 are randomly chosen from the index 
set  P1,  2,  ,  N  and different from i, and F is the 
scaling factor which is usually selected from the interval 
[0, 2]. 

2) Crossover: A crossover operation operates on the 
target vector and the mutant vector to form a trial vector 
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iu  
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x
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              (11) 

 
where Cr is the crossover probability within the interval 
(0, 1), randj is a random number generated within (0, 1), 
and jrand is an integer randomly selected from [1, D]. 

3) Selection: The better individual between the 
target vector and the trial vector is selected to become a 
member of the next generation. For minimization 
problem, the selection operation is as follows. 
 

1 ( ) ( )
otherwise

G G G
i i iG

i G
i

f f   


, 

, 

u u x
x

x
                                    (12) 

 
where f(a) is the function to calculate the objective 
function value of individual a. 
 
5 Computational experiments 
 

The algorithms proposed were tested in Matlab 
environment on a PC with Intel(R) Core (TM) CPU 
i3-2120 3.3 GHz, and 2 GB RAM. Some typical 
experiments were conducted to verify the effectiveness 
and efficiency of the proposed path planning method. 
The parameter setting of the path planning problem and 
the DE algorithm used in the simulation are listed in 
Table 1.  
 

Table 1 Parameter setting 

Parameter Value 

Problem space/(m×m)  [0, 50]×[0, 50] 

UAV speed/(m·s−1) 3 

Minimal turning radius/m 5 

Initial position [0, 0] 

Initial heading π/2 

NP 5D 

F 0.9 

Cr 0.5 

 
5.1 Dubins path between two points in wind 

Four typical examples of the Dubins paths in wind 

are plotted in Fig. 8. The red lines indicate the paths of 
UAVs in moving air frame while the blue ones indicate 
the paths in the ground frame. As shown in Fig. 8(a), the 
UAV intercepts the VT by using optimal Dubins path 
labeled by the red line. Under the condition shown in   
Fig. 8(b), the VTP intersects with CR, and there is no 
solution to Eq. (5) using optimal Dubins paths. As 
illustrated in Case A, the non-optimal path LRbig makes 
the UAV intercept the VT. Under the condition shown in 
Fig. 8(c), the VTP intersects with both two turning 
circles and the UAV flies along the optimal path RL to 
intercept the VT. Under the condition shown in Fig. 8 (d), 
the UAV intercepts the VT by using non-optimal path 
RSnopt. It can be seen that the paths relative to air frame 
(air path) satisfy the minimum turning radius constraint 
while the paths relative to ground frame (ground path) do 
not. 

From the analysis above, it is known that it is more 
complex when the VTP intersects with the turning circles. 
The path planning algorithm was executed for 10000 
times with randomly selected targets in the problem 
space and wind fields satisfying vw<3 m/s. The statistical 
results are shown in Table 2. It can be seen that the mean 
time consumption (MTC) of case 1 is minimal, and the 
time consumption of the method greatly depends on the 
allowed error of the bisection algorithm. The smaller the 
allowable error is, the more time is needed. Under all the 
conditions, the time consumed for the path planning of 
the UAV is very short, which makes the method very 
suitable for online path planning. 

As shown in Fig. 9, five different paths under 
different wind fields for the same target were planned, 
and the time that the UAVs needed to reach the target 
was also calculated. It can be seen that the paths and time 
consumption under different wind fields are very 
different, which results in the difference in the planned 
tours for the same DTSP under different wind fields. 
 
5.2 Dubins path for DTSP in wind 

Based on the model that the UAV flies from an 
initial configuration to a target in wind, the DTSP 
considering wind field can be solved through optimizing 
the visiting sequence of waypoints by DE. Figure 10 
shows the full air paths and ground paths for a simple 
MTST under two different wind fields. For both wind 
fields, the air paths shift and twist along the opposite 
direction of winds. The wind fields exhibit great impact 
on the UAVs’ air paths. 

Figure 11 exhibits the planned paths and their 
corresponding evolution plots in two more complex 
environments. There are 10 points to be visited in 
environment 1 and the DE converged by less than 100 
generations while 15 points in environment 2 and the DE 
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Fig. 8 Air paths and ground paths planned for four examples: (a) T=[−15 m,−15 m], vw=[1 m/s, −1 m/s]; (b) T=[12 m, −3 m],   

vw=[1 m/s, −1 m/s]; (c) T=[6 m, −6 m], vw=[−1 m/s, 1 m/s]. (d) T=[5 m, 2.5 m], vw= [1 m/s, 0 m/s]

  
Table 2 Statistical results based on Monto Carlo simulations  

Case Proportion/% MTC (accuracy is 0.01)/ms MTC (accuracy is 1)/ms

VTP does not intersect with turning circles 88.6 0.256 0.161 

VTP intersects with one turning circle 8.8 0.417 0.315 

VTP intersects with two turning circles 2.6 0.893 0.426 

Note: Accuracy refers to accuracy of root obtained by bisection algorithm. 
 

  
Fig. 9 Planned path under different wind fields for same target 

converged by nearly 150 generations. 
To verify the efficiency of the method above for 

DTSP, another two different algorithms for determining 
the visiting sequence of waypoints were also applied. 
One used the particle swarm optimization (PSO) to 
optimize the sequence and the other identified the 
sequence of waypoints by solving the corresponding 
ETSP. The comparative experiments were conducted on 
ten instances which are generated randomly in the 
problem space under different wind fields, and the three 
methods for determining the sequence of waypoints were 
executed 20 times with respect to each instance (the time 
that a UAV needs to finish the complete tour, called tour 
time, is recorded). For the instances with different scales, 
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Fig. 10 Comparison of air paths and ground paths planned for MTST under different wind fields: (a) vw=[1 −1]; (b) vw=[−1 1] 

 

 
Fig. 11 Planned paths in two environments: (a) Planned paths in environment 1; (b) Planned paths in environment 2; (c) Convergence 

plots for environment 1; (d) Convergence plots for environment 2 

 

different numbers of evolution generation (NEG) were 
used. The statistical results are presented in Table 3. 

On the whole, the planned paths using the sequence 
generated by DE are better than that by PSO and by 
solving corresponding ETSP under the two wind fields. 
Though obtaining the sequence by solving ETSP 
consumes less time, its performance greatly relies on the 
difference between Dubins distance and Euclidean 
distance. When the distances between points are not big 

enough in comparison to the minimal turning radius of 
the UAVs, the generated tour whose visiting sequence is 
obtained by solving the corresponding ETSP may be bad. 
As listed in Table 3, the average tour time is used for 
comparison, and the average percentage of time 
reduction obtained by the DE based algorithm in 
comparison to the ETSP algorithm is approximately 
20.5%. 

With the same NEG, the average and standard 
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Table 3 Statistical results of 20 runs for ten randomly generated instances 

Ins. 
No. 

N NEG Wind 
Algorithm  Algorithms comparison

ETSP/m 
Random key-PSO 

(avg, std, max, min)/m 
Random key-DE 

(avg, std, max, min)/m 
 

Reduction 
-ETSP/% 

Reduction
-PSO/%

1 8 100 
[1.2, −1.2] 93.3 (81.2, 8.4, 95.5, 72.5) (73.0, 0.9, 74.7, 72.5)  21.8 10.1 

[0.2, −0.2] 77.4 (69.9, 7.3, 78.0, 59.4) (60.1, 1.0, 61.4, 59.4)  22.4 14.0 

2 9 100 
[1.2, −1.2] 98.4 (96.9, 5.4, 107.5, 90.6) (92. 4, 1.9, 96.5, 90.6)  6.1 4.6 

[0.2, −0.2] 77.5 (77.9, 4.5, 83.4, 69.4) (74.9, 2.9, 79.9, 71.1)  3.4 3.9 

3 12 200 
[1.2, −1.2] 103.7 (111.8, 11.9, 130.3, 97.4) (95.0, 1.3, 97.7, 94.0)  8.4 15.0 

[0.2, −0.2] 94.0 (94.5, 5.9, 107.5, 87.1) (89.5, 1.9, 92.5, 86.9)  4.5 5.3 

4 13 200 
[1.2, −1.2] 118.8 ( 107.6, 7.0, 118.5, 92.9) (89.1, 7.1, 100.1, 80.9)  25 17.2 

[0.2, −0.2] 104.0 ( 90.4, 8.1, 106.6, 81.9) (86.4, 2.3, 89.8, 82.9)  16.7 4.4 

5 13 200 
[1.2, −1.2] 112.8 (94.6, 8.8, 108.0, 81.4) (70.9, 3.4, 77.1, 68.7)  37.2 25.1 

[0.2, −0.2] 119.1 (85.9, 6.9 , 97.0, 73.4) (72.8, 5.4, 84.5, 66. 9)  38.9 15.3 

6 14 200 
[1.2, −1.2] 120.4 (116.6, 8.3, 134.2, 107.3) (103.2, 6.9, 114.2, 94.1)  14.3 11.5 

[0.2, −0.2] 120.4 (97.7, 10.8, 118.6, 82.8) ( 83.8, 6.3, 94.8, 77.9)  30.4 14.2 

7 15 300 
[1.2, −1.2] 135.7 (110.7, 12.6, 127.1, 88.6) (96.8, 6.1, 107.3, 91.5)  28.7 12.6 

[0.2, −0.2] 123.6 (96.6, 10.3, 116.1, 84.9) (91.7, 5.6, 101.3, 84.5)  25.8 5.1 

8 16 300 
[1.2, −1.2] 114.3 (132.2, 8.5, 145.9, 114.4) (98.6, 7.3, 108.8, 90.4)  13.7 25.4 

[0.2, −0.2] 120.3 (108.7, 6.6, 120.1, 100.6) (100.5, 7.0, 114.1, 94.0)  16.5 7.5 

9 19 300 
[1.2, −1.2] 167.1 (150.3, 8.3, 162.9, 140.1) (110.3, 9.4, 125.9, 99.7)  34.0 26.6 

[0.2, −0.2] 135.1 (124.9, 12.9, 144.4, 101.7) (109.5, 9.4, 127.6, 98.5)  19.0 12.3 

10 20 300 
[1.2, −1.2] 161.0 (154.5, 15.0, 178.2, 131.2) (127.0, 10.2, 141.1, 105.7)  21.1 17.8 

[0.2, −0.2] 159.3 (137.6, 8.9, 153.4, 122.9) (124.1, 6.3, 132.9, 113.2)  22.1 9.8 
       

Note: Avg, std, min, max: average, standard deviation, minimum, and maximum of the results in 20 runs; Reduction-ETSP, Reduction-PSO: the reduction of the 
average tour time obtained by DE based algorithm in comparison to the ETSP algorithm and the PSO based algorithm 

 
deviations of the tour time optimized by DE are smaller 
than those optimized by PSO for most instances. DE 
obviously outperforms or at least performs 
comparatively against PSO in all instances except for 
instances 2, 4 and 7 in terms of the best result of 20 runs. 
Compared with PSO, DE shows higher robustness and 
better search ability for this kind of problems, and the 
average percentage of time reduction obtained by the DE 
based algorithm is approximately 12.9%. 

In contrast to the other two methods, the DE based 
algorithm exhibits a significant improvement in tour time, 
and it is very suitable to optimize the visiting sequence 
of waypoints. 
 
6 Conclusions 
 

1) Taking into account the prohibitively 
computational complexity of finding optimal solutions to 
DTSP, the Dubins paths in the sense of terminal heading 
relaxation were proposed. So, only the visiting sequence 
of waypoints should be determined, and the optimization 
scale of the whole problem reduced from 2N to N. 

2) By introducing the notion of the virtual target, 

the optimal Dubins path planning problem in wind from 
an initial configuration to a target was converted into an 
interception problem which was solved by finding the 
minimal root of a transcendental equation. Then, the 
DTSP in wind can be solved using the aforementioned 
solving frame for classic DTSP. 

3) The computational experiments verified the 
efficiency of the model and showed the great impact of 
wind on UAVs’ paths. Meanwhile, it also exhibited that 
the DE-based algorithm can generate better visiting 
sequence of waypoints than the other two algorithms. 
The proposed algorithm has remarkable advantages over 
its competitors in both the quality of planned Dubins 
tours in wind and the computation cost. 
 
Appendix 

1) Proof for Lemma 1 
Proof: Without loss of generality, the line L shown 

in Fig. 12 is taken as an example. Three points A, B and 
T lying on the line and their corresponding optimal 
Dubins paths from the initial configuration are depicted. 
In addition, the straight portion of the Dubins path with 
respect to T is perpendicular to L. The Dubins distances 
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Fig. 12 Dubins path from a configuration to a line 

 
from the initial configuration to A, B and T are 

A( )D A AP   B( )D B BP   ( )D T   

TTP  , respectively. 

From Fig. 12, we have 

A( ) ( )D A D T AP   TTP   

A T= AP TP   

  T AAK TP P K     

   T A 2 A 2tan( ) 0AK TP R P O K R P O K       

Similarly, we also have 

B( ) ( )D B D T BP   TTP   

B= BP  TP T   

B T B T T T 0BP P P P T P B P T      

So, T is the point corresponding to the shortest 
Dubins distance from the initial configuration to the line 
L. 

Proof end. 
2) Proof for Theorem 1 

 

  
Fig. 13 Schematic of Dubins paths w.r.t. a point moving along a 

line 

As shown in Fig. 13, the initial position is located at 
the point S, three lines L1, L2 and L3 in parallel with the 
Y-axis are plotted which satisfy 110 ,SP r   

21 2r SP r  and 312 ,r SP  respectively. We take the 
line L3 as an example to prove the theorem. It can be 
seen from Lemma 1 that the point corresponding to the 
DDCL for L3 is P32. The coordinates of a point on the 
line L3 can be described as (x0, y). 

For the point on the line L3 with y>0 ， the 
corresponding optimal Dubins distance can be calculated 
as follows. 

02 2 2
0

2 2
0

( ) (arccos
+

x
l y x y r r

x y


      

2 2
0

arccos )
+

r

x y
 

Differentiating l with respect to y, we have 
 

2 2 2
0 0

2 2
0

+d

d

y x y r rxl

y x y

 



 

 
The following conclusions can be drawn from the 

formula above. 
2

2

d d d
( ) 0, lim 1 and 0 for 0.

d d dy

l l l
y r y

y y y
      

For the point on the line L3 with y≤0 ， the 
corresponding optimal Dubins distance is 

02 2 2
0

2 2
0

( ) (2π arccos
+

x
l y x y r r

x y


       

2 2
0

arccos )
+

r

x y
 

Differentiating l with respect to y, we have 
2 2 2

0 0

2 2
0

+d

d

y x y r rxl

y x y

 



 

It can be seen that 
2

2

d d
lim 1 and 0 for 0

d dy

l l
y

y y
     

From above, we can arrive at the conclusion that 
dl/dy changes from −1 to 1 as y changes from   to 

,  and dl/dy=0 holds when y=r. It means that when the 
VT moves along the line from P32 upwards or 
downwards, the Dubins distance D(d) from the initial 
configuration to the VT will increase, D′(d) will also 
increase and lim ( ) 1.

d
D d


   

For the lines L1 and L2 shown in Fig. 13, we study 
the parts that are outside CR and the similar conclusions 
can be derived. 

Proof end. 
3) Proof for Corollary 1 
Take the lines in the right half plane which are 

intersected with CR as examples. 
 ① Case a: There exists at least one intersection 

point above the X-axis. 
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Fig. 14 Schematic provided for proof of Corollary 1 

 
As shown in Fig. 14, the line L1 intersects with CR 

where one intersection point is above the X-axis and the 
other is not. It is evident that the Dubins distances from 
the initial configuration to the points inside CR are bigger 
than πr, and the Dubins distance to the intersection point 
P1 above the X-axis is smaller than πr. So the point 
corresponding to DDCL must not be inside the circle. 

② Case b: Both the intersection points are below 
the X-axis. 

As shown in Fig. 14, the line L2 intersects with CR 
and both intersection points are below the X-axis. From 
Ref. [12], it is known that the points inside CR which 
have the same Dubins distances form a series of arcs of 
cardioids. So for any point P on the line which lies inside 
the circle，its corresponding Dubins distance must be the 
same with that of a point P′ on the circle from P2 to P3 
below the X-axis. So the Dubins distance with respect to 
P is longer than that of P2.  

In light of the conclusions of Lemma 1, it can be 
concluded that the point on a line corresponding to 
DDCL must be outside the turning circles or on the 
turning circles. 

Proof end. 
4) Proof for Theorem 2 
It is known from above that 

1 2
w

( )
( ) ( ) ( )

D d d
T d T d T d

v v
     

Differentiating T with respect to d, we have 

w

1 1
( ) ( )T d D d

v v
    

According to Theorem 1, it is known that D′(d)<1, 

so 
w w

1 1 1 1
( ) ( ) 0.T d D d

v v v v
       

According to the conclusion of Remark 2, it can be 
concluded that the equation T(d)=0 has one and only one 
solution. Figure 15 plots two lines L1 and L2, they both 
go through the point (0, D(0)/v) and their corresponding 
slopes are 1/v and −1/v, respectively. From Theorem 1, 

we know that  1
d d

T d
v v


   which means that T1(d) 

must lie within the shaded region shown in Fig. 15. From 
Fig. 15, it can be readily calculated that 

mind   

1
w

1 1
(0) /( )T

v v
  and max 1

1 1
(0) /( ).

w
d T

v v
   

 

 
Fig. 15 Solution to equation under condition with VTP not 

intersect with CR or CL 

Proof end. 
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