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Abstract: This study is concerned with the problem of controller design for linear systems with unknown or partially
known communication delay. A new networked predictive control scheme is proposed to deal with the unknown or partially
known communication delay. The closed-loop system is modelled as a switched system under constraint switching taking an
important property of communication delay into account. Sufficient stability conditions are derived using switched Lyapunov
function approach. On the basis of stability conditions, the method of designing the controller gain matrix and some important
parameters in the control scheme is investigated. Finally, a numerical example is given to confirm the effectiveness of the
proposed method.
1 Introduction

Networked control systems (NCSs) whose components are
connected with some form of communication networks have
received much attention in recent years. NCSs have many
practical advantages such as reduced wiring and power, low
cost, ease of diagnosis and maintenance, and high flexibility
of operations [1–3]. Along with advantages, some disad-
vantages such as network-induced delay, data dropout, data
disorder and quantised error are also introduced.

To deal with these disadvantages, many methodologies
have been proposed such as time-delay system method, jump
system method, switched system method, impulsive systems
approach and so on. For example, in [4–6], the NCS was
modelled as a system with time-varying delay and delay-
dependent stability conditions were obtained. In [7], both the
sensor-to-controller and the controller-to-actuator network-
induced delay were modelled as Markov chains and a two-
mode dependent controller was designed based on necessary
and sufficient stochastic stability conditions. In [8], NCSs
with time-varying transmission intervals and transmission
constraints were modelled as discrete-time switched linear
uncertain systems and stability conditions for the closed-
loop system were derived using a convex overapproximation
method. In [9], NCSs were modelled as linear impulsive
systems and state-feedback controller were designed by
employing Lyapunov functions with discontinuity. Other
methodologies can be found in some good survey papers
[10–13] and references therein.

It should be pointed out that the network-induced delay
is usually assumed to be measurable in existing publica-
tions. Using the so-called ‘time-stamp’ approach, the value
of the network-induced delay can be obtained. However, it
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is not an easy task since all the components in the sys-
tem are needed to be synchronised. To the best of authors’
knowledge, there are few results concerning the controller
design problem for NCSs with unknown or partially known
network-induced delay. By decomposing unknown network-
induced delay into a fixed part and a randomly varying part,
delay-dependent stability conditions were developed for the
static controller design based on robust control method and
Lyapunov functional approach [14]. The problem of fault
detection of NCSs with unknown network-induced delay
and unknown input was investigated in [15] using eigen-
decomposition, adaptive evaluation and adaptive threshold.
By employing Taylor series expansion, the controller design
problem in the context of unknown time varying delays
was transformed into a problem of stabilisation of uncertain
systems with polytopic uncertainties [16].

It should be noted that the above works did not con-
sider how to compensate for network-induced delay actively.
Recently, a networked predictive control method has been
proposed to actively compensate for network-induced delay
[17–24]. Generally speaking, the networked predictive con-
trol method has three key steps. First, the controller node
generates a series of future control signals based on the
model of the plant using model predictive control or some
iterative algorithms. Second, all the future control signals
are packed into one packet and were sent to the actua-
tor node. Finally, the actuator node selects an appropriate
control signal from the received packet according to the
network-induced delay. Both simulations and experimen-
tal results show that this method is quite effective and can
obtain a similar performance as local control. However, the
network-induced delay is assumed to be known in networked
predictive control method. If the network-induced delay is
IET Control Theory Appl., 2014, Vol. 8, Iss. 18, pp. 2282–2288
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unknown or partially known, how to design a networked pre-
dictive controller motivates this study. Part of the materials
in this study can be found in [25].

In this paper, a control scheme which is robust to the
unknown or partially communication delay is proposed
based on the networked predictive control method. By taking
an important property of communication delay into account,
the closed-loop system is transformed into a switched system
under constraint switching. Sufficient stability conditions are
derived using switched Lyapunov function approach and
presented in terms of linear matrix inequalities (LMIs). The
controller gain matrix and some parameters can be obtained
by solving LMIs. Finally, a numerical example is given
to confirm the validity and effectiveness of the proposed
method.

2 Problem formulation

Consider the following discrete-time linear system

x(k + 1) = Ax(k) + Bu(k) (1)

y(k) = Cx(k) (2)

where x(k) ∈ R
n is the state vector; u(k) ∈ R

m is the control
input; y(k) ∈ R

l is the output vector; A ∈ R
n×n, B ∈ R

n×m

and C ∈ R
l×n are constant system matrices.

For the sake of simplicity, but without loss of generality,
NCSs with random delay in the feedback channel (from sen-
sor to controller) are considered in this paper. The following
assumptions are made.

Assumption 1: The pair (A, B) is completely controllable.

Assumption 2: The network-induced delay τ(k) is
assumed to vary within an interval τ1 ≤ τ(k) ≤ τ2, where
τ1 and τ2 are known positive integers.

Following traditional networked predictive control scheme
[17–23], if the network-induced delay is measurable, based
on the received state x(k − τ(k)) at the controller node,
the state predictions from time k − τ(k) + 1 to k can be
constructed as

x(k − τ(k) + 1) = Ax(k − τ(k)) + Bu(k − τ(k))

x(k − τ(k) + 2) = Ax(k − τ(k) + 1) + Bu(k − τ(k) + 1)

= A2x(k − τ(k)) + ABu(k − τ(k))

+ Bu(k − τ(k) + 1)

...

x(k) = Aτ(k)x(k − τ(k)) +
τ(k)∑
i=1

Ai−1Bu(k − i)

(3)

From the above state predictions, the networked predictive
controller is designed as

u(k) = Kx(k)

= KAτ(k)x(k − τ(k)) + K
τ(k)∑
i=1

Ai−1Bu(k − i) (4)

where K is the controller gain matrix.
However, the above control method needs that the

network-induced delay is exactly measurable. When the
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network-induced delay τ(k) is unknown or partially
unknown, the above control method is unavailable. Two
cases of network-induced delay is considered in this paper.
One is that the network-induced delay is unknown. The other
is that the network-induced delay is partially known, that is,
the exact value of the network-induced delay is unknown
but some other information about it is known.

Case 1: For the unknown network-induced delay case, simi-
lar to [26] the following state feedback controller is proposed

u(k) = KAhx(k − τ(k)) + K
h∑

j=1

Aj−1Bu(k − j) (5)

where h is the prediction step to be determined and satisfies
τ1 ≤ h ≤ τ2.
Case 2: For the partially known network-induced delay case,
the integer interval [τ1, τ2] can be divided into γ subinter-
vals [τ1, d1], [d1 + 1, d2], …, [dγ−1 + 1, τ2]. For brief, we
use S1, S2, …, Sγ representing the above γ subintervals. For
a network-induced delay τ(k), though we do not know its
accurate value, we know the subinterval which it belongs to.
It should be noted that Case 2 turns into Case 1 when γ = 1
and Case 2 turns into the case that the network-induced delay
is known when γ = τ2 − τ1 + 1.

For each Si, i = 1, 2, . . . , γ , we choose an prediction step
hi ∈ Si. If τ(k) ∈ Si, the following state feedback controller
is proposed

u(k) = KAhi x(k − τ(k)) + K
hi∑

j=1

Aj−1Bu(k − j) (6)

where hi, i = 1, 2, . . . , γ are the prediction step to be
determined.

3 Stability analysis

In this section, stability of the closed-loop system is anal-
ysed and sufficient stability conditions are obtained using
switched Lyapunov function approach.

3.1 Unknown network-induced delay

Substituting (5) into (1) yields

x(k + 1) = Ax(k) + BKAhx(k − τ(k))

+ BK
h∑

j=1

Aj−1Bu(k − j) (7)

It it clear that

x(k) = Ahx(k − h) +
h∑

j=1

Aj−1Bu(k − j) (8)

Therefore

h∑
j=1

Aj−1Bu(k − j) = x(k) − Ahx(k − h) (9)

From (7) and (9), one can obtain

x(k + 1) = (A + BK)x(k) + BKAhx(k − τ(k))

− BKAhx(k − h) (10)
2283
© The Institution of Engineering and Technology 2014



www.ietdl.org
Remark 1: From (10), it is easy to see that if τ(k) ≡ h,
the closed-loop system can be described as x(k + 1) =
(A + BK)x(k). It means that the network-induced delay is
completely compensated.

The closed-loop system (10) can be seen as a system
with two time-delays. One is constant and the other one is
time-varying. Therefore we can use Lyapunov–Krasovskii
functional method [26–28] to analyse its stability. How-
ever, under the assumption that the controller always use
the most latest data, if x(k − τ(k)) is available at step k
but there is no new information arriving at step k + 1, then
x(k − τ(k)) is at least available for controller design. So
the network-induced delay will increase at most by 1 each
step, that is, τ(k + 1) ≤ τ(k) + 1. Methods in [26–28] only
consider τ1 ≤ τ(k) ≤ τ2 but ignore this important property
of network-induced delay τ(k). Taking this property into
account, we transform the closed-loop system (10) into a
switched system under constraint switching.

Define a new vector

z(k) = [
xT (k) xT (k − 1) · · · xT (k − τ2 + 1) xT (k − τ2)

]T

and system (10) can be rewritten as the following switched
system

z(k + 1) = ϒσ(k),hz(k) (11)

where σ(k) ∈ I with I = {τ1, · · · , τ2}, is a piecewise con-
stant function and denotes the active mode.

ϒi,h =

⎡
⎢⎢⎢⎢⎣

0

i−1︷ ︸︸ ︷
0 · · · 0 BKAh 0 · · · 0

0

0τ2n×τ2n

...
0

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

A + BK

h−1︷ ︸︸ ︷
0 · · · 0 −BKAh 0 · · · 0

0

Iτ2n×τ2n

...
0

⎤
⎥⎥⎥⎥⎦, i ∈ I

Since the network-induced delay satisfies τ(k + 1) ≤ τ(k) +
1, it is clear that σ(k + 1) ≤ σ(k) + 1. Therefore the
switched system (11) is under constraint switching but not
arbitrary switching.

Recently, switched systems have received great develop-
ments. Rich results for switched systems can be used to
analyze networked control system [29–31]. Using switched
Lyapunov function approach [32], a sufficient stability con-
dition for system (11) is developed as the following theorem.

Theorem 1: For given controller gain matrix K and predic-
tion step h, system (11) is asymptotically stable if there exist
matrices Pi > 0 and any matrices Gi such that

[ −Pi ∗
Giϒi,h Pj − Gi − GT

i

]
< 0, ∀(i, j) ∈ I × I and

j ≤ i + 1 (12)
2284
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Proof: Define a indicator function α(k) = [ατ1(k), . . . , ατ2

(k)]T with

αi(k) =
{

1, σ(k) = i
0, otherwise

Similar to [32, 33], choose a switched Lyapunov function

V (k , z(k)) = zT (k)P(α(k))z(k)

= zT (k)

(
τ2∑

i=τ1

αi(k)Pi

)
z(k) (13)

One can obtain that

�V = V (k + 1, z(k + 1)) − V (k , z(k))

= zT (k + 1)P(α(k + 1))z(k + 1) − zT (k)P(α(k))z(k)

= zT (k + 1)Pjz(k + 1) − zT (k)Piz(k) (14)

It is clear that the following equation holds for all (i, j) ∈
I × I and j ≤ i + 1

0 = 2zT (k + 1)Gi

[−z(k + 1) + ϒi,hz(k)
]

(15)

Adding both sides of (15) to both sides of (14) yields

�V = zT (k + 1)(Pj − Gi − GT
i )z(k + 1) − zT (k)Piz(k)

+ 2zT (k + 1)Giϒi,hz(k) (16)

So if (12) holds, then �V < 0 which means that system
(11) is asymptotically stable. �

Definition 1: A switched system x(k + 1) = Aσ(k)x(k) is said
to be exponentially stable with a decay rate λ > 1, if its solu-
tion x(k) satisfies x(k) ≤ κλ−k‖x(0)‖, ∀k ≥ 0, where κ > 0
is a constant.

From [33], we can see that if the system (11) is asymp-
totically stable, it is also exponentially stable. A decay rate
can be estimated by the following theorem.

Theorem 2: For given controller gain matrix K and predic-
tion step h, system (11) is exponentially stable with a decay
rate λ = [1/(

√
1 − ν)], if there exist matrices ηI < Pi < I ,

any matrices Gi and scalars ν > 0, η > 0, such that

[−Pi + νI ∗
Giϒi,h Pj − Gi − GT

i

]
< 0, ∀(i, j) ∈ I × I and

j ≤ i + 1 (17)

Proof: Following the similar line as in [33], we can see the
Lyapunov function (13) satisfies

η‖z(k)‖2 ≤ V (k , z(k)) ≤ ρ‖z(k)‖2 (18)

where η and ρ are finite positive constants.
IET Control Theory Appl., 2014, Vol. 8, Iss. 18, pp. 2282–2288
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If (12) holds, there will exist a sufficient small ν > 0 such
that

V (k + 1, z(k + 1)) − V (k , z(k)) ≤ −ν‖z(k)‖2 (19)

From (18), we can obtain −‖z(k)‖2 ≤ −V (k , z(k))/ρ.
Therefore

V (k + 1, z(k + 1)) ≤ (1 − ν/ρ)V (k , z(k)) (20)

Let λ = [1/(
√

1 − ν/ρ)], we can obtain

V (k , z(k)) ≤ λ−2kV (0, z(0)) (21)

From (18), we can obtain

η‖z(k)‖2 ≤ ρλ−2k‖z(0)‖2 (22)

That is

‖z(k)‖ ≤ √
ρ/ηλ−k‖z(0)‖ (23)

Equations (18) and (19) can be rewritten as

η/ρI < Pi/ρ < I (24)[−Pi + νI ∗
Giϒi,h Pj − Gi − GT

i

]
< 0 (25)

Pre- and post-multiplying both side of (25) with[
1/

√
ρ 0

0 1/
√

ρ

]

and its transpose yields[−Pi/ρ + ν/ρI ∗
Gi/ρϒi,h Pj/ρ − Gi/ρ − GT

i /ρ

]
< 0 (26)

Define new variables ν = ν/ρ, η = η/ρ, Gi = Gi/ρ, Pi =
Pi/ρ and (17) and ηI < Pi < I can be obtained. The proof
is completed. �

3.2 Partially known network-induced delay

Substituting (6) into (1) yields

x(k + 1) = Ax(k) + BKAhi x(k − τ(k))

+ BK
hi∑

j=1

Aj−1Bu(k − j), τ(k) ∈ Si (27)

Similarly, the following equation holds for i = 1, 2, . . . , γ

hi∑
j=1

Aj−1Bu(k − j) = x(k) − Ahi x(k − hi) (28)

From (27) and (28), one can obtain

x(k + 1) = (A + BK)x(k) + BKAhi x(k − τ(k))

− BKAhi x(k − hi), τ(k) ∈ Si (29)

The closed-loop system (29) can be seen as a switched sys-
tem with two time-delays whose sub-system is described

by (29). Although we can use Lyapunov–Krasovskii func-
tional method to analyse its stability, an important property
of network-induced delay τ(k), that is, τ(k + 1) ≤ τ(k) + 1
will be ignored. Therefore we transform closed-loop sys-
tem (29) into the following switched system under constraint
switching

z(k + 1) = ϒσ(k),h1,...,hγ
z(k) (30)

where σ(k) ∈ I with I = {τ1, τ1 + 1, . . . , τ2} denotes the
active mode

ϒj,h1,...,hγ
=

⎡
⎢⎢⎢⎢⎢⎣

0

j−1︷ ︸︸ ︷
0 · · · 0 BKAμj 0 · · · 0

0

0τ2n×τ2n

...
0

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

A + BK

μj−1︷ ︸︸ ︷
0 · · · 0 −BKAμj 0 · · · 0

0

Iτ2n×τ2n

...
0

⎤
⎥⎥⎥⎥⎥⎦ , j ∈ I

where μj = hi if j ∈ Si, i ∈ {1, 2, . . . , γ }.
Using the switched Lyapunov function approach [32], a

sufficient stability condition for system (30) is derived in the
following theorem.

Theorem 3: For given controller gain matrix K and predic-
tion step hi, i = 1, 2, . . . , γ , system (30) is asymptotically
stable if there exist matrices Pj > 0 and any matrices Gj

such that[ −Pj ∗
Gjϒj,h1,...,hγ

Pl − Gj − GT
j

]
< 0, ∀(j, l) ∈ I × I and

l ≤ j + 1 (31)

Similarly, system (30) is also exponentially stable. A decay
rate can be estimated by the following theorem.

Theorem 4: For given controller gain matrix K and predic-
tion step hi, i = 1, 2, . . . , γ , system (11) is exponentially
stable with a decay rate λ = (1/

√
1 − ν)], if there exist

matrices ηI < Pj < I , any matrices Gj and scalars ν > 0,
η > 0, such that

[ −Pj + νI ∗
Gjϒj,h1,...,hγ

Pl − Gj − GT
j

]
< 0, ∀(j, l) ∈ I × I and

l ≤ j + 1 (32)

4 Controller design

In this section, the design problem of the controller gain
matrix K and the prediction step h or hi, i = 1, 2, . . . , γ
is considered. The basic idea is that appropriate controller
gain matrix K and the prediction step h or hi, i = 1, 2, . . . , γ
should make the decay rate λ of the closed-loop system as
large as possible.

Before moving on, the following lemma is introduced,
which has an important role in the controller design.
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Lemma 1: For a given B ∈ R
n×m with

rank(B) = m and B = U

[

0

]
V T

if the matrix R has the following structure

R = U

[
R1 R2

0 R3

]
U T

then there exists a matrix Z ∈ R
m×m such that RB = BZ , and

Z = V−1R1V T , where U ∈ R
n×n, V ∈ R

m×m are orthogo-
nal matrices,  = diag(ξ1, ξ2, · · · ξm), ξi (i = 1, 2, . . . m) are
non-zero singular values of B, R1 ∈ R

m×m, R2 ∈ R
m×(n−m)

and R3 ∈ R
(n−m)×(n−m).

Proof: This lemma is a generalisation of Lemma 3 in [34].
Without loss of generality, it is assumed that m < n. From

B = U

[

0

]
V T

and RB = BZ , we can obtain that

RU

[

0

]
V T = U

[

0

]
V T Z

that is

U T RU

[

0

]
V T =

[

0

]
V T Z

Assume

R = U

[
R1 R2

R4 R3

]
U T

It can be obtained that

[
R1V T

R4V T

]
=

[
V T Z

0

]

Therefore the above equation is solvable if R4 = 0. Particu-
larly, if R is a symmetric matrix, the above equation is solv-
able if R2 = R4 = 0, which is the result of Lemma 3 in [34].
In addition, it is easy to obtain that Z = V−1R1V T . �

4.1 Unknown network-induced delay

On the basis of Theorem 2, a method of designing the con-
troller gamin matrix K and the prediction step h is given in
the following theorem.

Theorem 5: To make decay rate of the system (11) as
large as possible, an appropriate h is given by h∗ =
arg max{νopt

l , l ∈ I}, where ν
opt
l is the optimal value of the

following optimisation problem for variables ηl I < Pl
i < I ,

Gl
i = U

[
Gl

11 Gl
i12

0 Gl
i22

]
U T , K̂l , νl > 0, and ηl > 0.
2286
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Maximise νl

Subject to

[ −Pl
i + νl I ∗

Gl
i� + B̂K̂lCi,l Pl

j − Gl
i − Gl

i
T

]
< 0, ∀(i, j) ∈ I × I

and j ≤ i + 1 (33)

where

� =

⎡
⎢⎢⎣

A 0 0 · · · 0
0

I τ2n×τ2n

...
0

⎤
⎥⎥⎦ , B̂ =

⎡
⎢⎢⎣

B
0
...
0

⎤
⎥⎥⎦

Ci,l =
[

I

i−1︷ ︸︸ ︷
0 · · · 0 Al 0 · · · 0

]

+
[

0

l−1︷ ︸︸ ︷
0 · · · 0 −Al 0 · · · 0

]
, i ∈ I

the corresponding feedback controller gain matrix is given
by K = V−1Gh∗

11
−1

�V TK̂h∗ , and , U , V are defined by

B̂ = U

[

0

]
V T

Proof: It is easy to see that

ϒi,h = � + B̂KCi,h, i ∈ I (34)

From

Gl
i = U

[
Gl

11 Gl
i12

0 Gl
i22

]
U T , B̂ = U

[

0

]
V T

and Lemma 1, there exists a Zl such that

Gl
i B̂ = B̂Zl (35)

From (17), (34) and (35), and define K̂l = ZlK , and (33)
can be obtained. From Lemma 1, one can obtain Zl =
V−1Gl

11V T. Therefore K = V−1Gl
11

−1
�V TK̂l . �

4.2 Partially known network-induced delay

For partially known network-induced delay, a method of
designing the controller gamin matrix K and prediction step
hi, i = 1, 2, . . . , γ is given as follows based on Theorem 4.

Theorem 6: To make decay rate of the system (30) as large
as possible, appropriate hi are given by {h∗

1, h∗
2, . . . , h∗

γ } =
arg max{νopt

l1,...,lγ
, li ∈ Si, i = 1, 2, . . . , γ }, where ν

opt
l1,...,lγ

is
the optimal value of the following optimisation problem for
variables

ηl1,...,lγ I < P
l1,...,lγ
j < I , G

l1,...,lγ
j = U

[
G

l1,...,lγ
11 G

l1,...,lγ
i12

0 G
l1,...,lγ
i22

]
U T ,

K̂l1,...,lγ , νl1,...,lγ > 0 and ηl1,...,lγ > 0
IET Control Theory Appl., 2014, Vol. 8, Iss. 18, pp. 2282–2288
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Maximise νl1,...,lγ
Subject to[
−P

l1,...,lγ
j + νl1,...,lγ I ∗

G
l1,...,lγ
j � + B̂K̂Cj,l1,...,lγ P

l1,...,lγ
k − G

l1,...,lγ
j − G

l1,...,lγ
j

T

]
< 0

∀(j, k) ∈ I × I and k ≤ j + 1
(36)

where

Cj,l1,...,lγ =
[

I

j−1︷ ︸︸ ︷
0 · · · 0 Aμj 0 · · · 0

]

+
[

0

μj−1︷ ︸︸ ︷
0 · · · 0 −Aμj 0 · · · 0

]
, j ∈ I

with μj = li if j ∈ Si, i ∈ {1, 2, . . . , γ }. The correspond-
ing feedback controller gain matrix is given by K =
V−1G

h∗
1,...,h∗

γ

11

−1
�V TK̂h∗

1,...,h∗
γ
, and �, B̂, , U , V are as

defined in Theorem 5.

5 Numerical example

In this section, a numerical example is given to show the
effectiveness of the method developed in this paper.

Consider the following system with

A =
[

1.1 0
−1.0 −0.8

]
, B =

[
1
1

]
, C = [1 0]

Clearly, the above system is the open-loop unstable. The
network-induced delay is assumed to be bounded by 1 ≤
τ(k) ≤ 5 as shown in Fig. 1. Two cases of the network-
induced delay are considered.

Case 1: Unknown network-induced delay.
For this case, any information about the network-induced

delay is unknown except its upper and lower bound. Using
the proposed method, we can obtain an appropriate h = 3
and the corresponding feedback control gain matrix K is

K = [−0.2269 0.0769]

Let x(0) = [10 0]T, two simulations are conducted. One is
the output of the system using the control law (5). The other
is the output of the system using the state feedback controller
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u(k) = Kx(k − τ(k)) with the same controller gain matrix
K . Simulation results are given in Fig. 2. We can see that the
closed-loop system is asymptotically stable using the pro-
posed method and the control performance of the proposed
method is much better than the one of the state feedback
control without delay compensation. Therefore the method
proposed in this paper can compensate for the unknown
network-induced delay to some extent.

Case 2: Partially known network-induced delay
It is assumed that the network-induced delay can be

divided into two subintervals, that is, [1, 3] and [4, 5]. Using
the proposed method, we can obtain appropriate h1 = 2 and
h2 = 4, and the corresponding feedback control gain matrix
K is

K = [−0.0999 0.2608]

Similarly, simulation results under different control meth-
ods are given in Fig. 3. We also can see the proposed
method outperforms the state feedback control without delay
compensation from Fig. 3.

Next, we will compare the results between Cases 1 and
2. For the sake of fairness, this two cases use a same K =[−0.2269 0.0769

]
. Simulation results are given in Fig. 4.

We can see that Case 2 outperforms Case 1 since it uses
more information about the delay.
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6 Conclusions

The problem of controller design for networked control
systems with unknown or partially known time-varying com-
munication delay has been investigated in this paper. A
modified networked predictive control scheme has been pro-
posed to deal with the unknown or partially known delay.
The closed-loop system has been converted to a discrete-
time switched system. Using switched Lyapunov functional
method, sufficient stability conditions have been obtained.
The controller design method has been also considered.
Finally, effectiveness of the proposed method has been
illustrated by a numerical example.
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