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ABSTRACT

The problem of distributed connectivity-preserving leader-follower flocking of multiple autonomous agents with second-order
dynamics is investigated. First, a new class of bounded artificial potential fields is carefully designed which could guarantee connectivity
preservation, distance stabilization and collision avoidance simultaneously as the system evolves. Furthermore, in the absence of accelera-
tion measurements of the dynamic leader, a set of distributed and bounded leader-follower flocking control protocols is derived for each
follower with the aid of the combination of potential based gradient descent methods and the sliding mode control paradigms. It is shown
that all followers achieve velocity consensus and collision avoidance with the dynamic leader, the underlying network remains connected for
all time, and the desired stable flocking behavior is asymptotically achieved on the condition that the initial network is connected. Finally,
nontrivial simulations and experiments are worked out to verify the effectiveness of the proposed control algorithms.
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I. INTRODUCTION

1.1 Previous work

Distributed flocking of networked agents has received
considerable attention in recent years to solve a wide variety
of spatially distributed tasks [1–3,7,8,34,38–40]. Reynolds pro-
posed the boids model which consists of three heuristic rules of
separation, cohesion and alignment [2]. Inspired by the Reyn-
olds’ model, many flocking algorithms were presented by a com-
bination of velocity consensus combined with local artificial
potential field (APF) [4,8,9]. As a common property, network
connectedness is most commonly assumed rather than proved in
the above results, which is impractical because the communica-
tion network is usually distant dependent due to the limited
sensing/communication capabilities of the agents, thus making it
difficult or even impossible to satisfy and verify the connectivity
assumption for arbitrary initial states.

Motivated by the significance and the practical need for
connectivity preservation, connectivity-preserving flocking of
mobile networks is rapidly becoming a hot research topic, and

various strategies have been developed including both central-
ized [11,12] and decentralized approaches [6,13–19,21,30,36],
which can be divided into three main categories: geometrical
constraint technique, spectral graph theory method, and APF
method. The geometrical constraint technique first appeared in
[10], and was extended to the second-order system in [20].
Through measuring the geometric connectivity robustness of
the networked robots, global connectivity could be achieved. For
the spectral graph theory method. One branch is to maximize the
algebraic connectivity of the graph Laplacian matrix via
nonconvex optimization based on subgradient or semidefinite
programming (SDP) to guarantee connectivity [11,15]. The other
branch is to maintain connectivity via energy functions com-
bined with distributed eigenvalue estimators [22]. The APF
method steers the system to converge to the desired flocking
configuration while preserving connectivity via superposition of
the attractive and repulsive forces, the idea of which is to assign
each communication link an appropriate weight characterized as
the tension force, which reaches infinity whenever the link tends
to break. Other solution techniques include hybrid control laws
adopting market-based auctions with gossip algorithms for con-
nectivity preserving link additions and deletions [17].

To the best of our knowledge, many APF based approaches
and the spectral graph approaches use unbounded potential
fields/enegy functions to force the agents to shrink the commu-
nication links whenever they tend to leave the sensing or com-
munication range between each other. The algorithms therein
can not guarantee convergence and connectivity maintenance
whenever upper bounds on the actuation are imposed. In
practical applications, however, unbounded control input is
impossible because real mobile agents have only limited
actuation capabilities, e.g., the motor cannot generate an

Manuscript received January 10, 2013; revised May 21, 2013; accepted December
6, 2013.

Yutian Mao, Lihua Dou (corresponding author, e-mail: doulihua@bit.edu.cn),
Hao Fang, and Jie Chen are all with the School of Automation and Key Laboratory of
Intelligent Control and Decision of Complex Systems, Beijing, 100081, China.

This work was supported by Projects of Major International (Regional) Joint
Research Program (No. 61120106010), National Science Foundation for Distin-
guished Young Scholars of China (No. 60925011) and National Natural Science
Foundation of China (No. 61175112), the Program for New Century Excellent Talents
in University and Beijing Education Committee Cooperation Building Foundation
Project, Beijing Outstanding Ph.D. Program Mentor (No. 20131000704), Foundation
for Innovative Research Groups of the National Natural Science Foundation of China
(No. 61321002).

–Brief Paper–

Asian Journal of Control, Vol. 17, No. 1, pp. , January 2015
Published online 2  F ebruary 2014 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/asjc.8

304–314
7 25

© 2014 Chinese Automatic Control Society and Wiley Publishing Asia Pty Ltd



infinitely large torque to the robots. Although bounded APFs
were carefully designed to produce the bounded control inputs in
[29,31–33], only agents with first-order kinematics are consid-
ered. Furthermore, as the authors pointed out, the development
therein is based on the assumption that the probability of simul-
taneous collisions is negligible, and no other agents stay within
the collision region of an agent when it is close to breaking an
existing link, which is rather restrictive and hard to be satisfy in
real applications. On the other hand, more stringent constraints
are required in many existing results on flocking with a dynamic
leader that either the velocity of the leader is constant [19,28] or
the acceleration of the leader is available to all the followers
[8,25,26,30].

1.2 Contributions

To overcome the above limitations, we focus on studying
distributed connectivity-preserving flocking algorithm with a
dynamic leader for the agent group with double integrator
dynamics. The contributions of our work are two fold:

1. In contrast to the unbunded APFs in [17,19], a class of
smooth and bounded APFs is carefully designed for flock-
ing behavior by integrating connectivity maintenance, dis-
tance stabilization and collision avoidance, simultaneously.
Therefore, the proposed local control protocols respect
both sensor limitation and actuator saturation and thus are
preferable for application in real situations.

2. In the case where none of the followers have access to the
acceleration of the dynamic leader, a set of bounded dis-
tributed leader-follower flocking control protocols is also
carefully devised with the aid of distributed sliding mode
control technique, the advantage of which over [8,24–
26,28] lies in the accomplishment of the stable flocking
motion under more general and practical assumptions
without acceleration measurements of the dynamic leader,
which might be used to replace certain expensive measure-
ment devices in practical applications.

The rest of the paper is organized as follows: Section II
provides background and necessary preliminaries used through-
out this paper. Sections III is the main part of the paper which
presents the bounded leader-follower flocking control algorithms
with connectivity maintenance for second-order multi-agent
systems without/with acceleration measurements of the dynamic
virtual leader. Nontrivial simulations and experiments are per-
formed in Section IV. Finally, concluding remarks and future
directions are given in Section V.

II. PRELIMINARIES

2.1 Background

Some of the main notions in algebraic graph theory which
are borrowed from [42] are summarized here. Given N mobile
agents, each agent is considered to have limited communication

radius R. The communication architecture can be modeled as an
undirected graph G V E= { , }, where V = { , , , }1 2 … N is the set
of all agents. E V V⊆ × is the set of communication links among
agents. N i is the neighbor set of agent i with symmetry property
i j∈N implies j i∈N . Agent j is a neighbor of agent i if
( , )j i ∈E. Proximity-limited communication is modeled by the
adjacency matrix A = [aij] ∈ RN×N with the element aij defined as

a t

a t x t R

a t xij

ij ij

ij ij( )

, (( ( ) ) ( ( ) ))

(( ( ) ) ( (+

−

−=
= ∧ ≥ −

∨ > ∧
0 0

0
2if ε
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,
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⎧
⎨
⎪
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(1)

where t− and t+ refer to the time instant before and after state
transitions of the switching signal and the symbol ∧ and ∨ denote
the boolean AND and OR operation, respectively. It is worth
noting that the ε2 > 0 introduces a hysteresis region within which
the link preserves its membership status (no addition or deletion)
and is crucial in stability analysis of the overall system.

Further, the degree matrix of the graph is defined as
D = diag{di} with the weighted node degrees d ai ijj i

=
∈∑ N

as

the diagonal elements. The Laplacian matrix of G is then given
by L = D − A, which captures the adjacency relationship and the
interaction strength between neighboring agents, and has the
following properties:

1. L is positive semi-definite for undirected graphs with the
eigenvalues of 0 = λ1 ≤ λ2 ≤ . . . ≤ λN;

2. L1N = 0, where 1N is the column vector of all ones and
3. λ2(L) > 0 if and only if the undirected graph G is

connected.

Lemma 1 [23]. Consider a nonnegative matrix H defined as
H = diag(h1, h2, . . . , hN) with at least one positive element, then
all eigenvalues of the matrix L + H are positive. Moreover, if G1

is a graph generated by adding some edges into G , then
λ1(L1 + H) ≥ λ1(L + H) > 0, where L1 is the graph Laplacian
of G1.

2.2 Problem formulation

Consider a group of N agents with second-order dynamics
moving in the plane, which is described by

�
�

…
x v

v u
i N

i i

i i

=
=

= 1 2, , , (2)

where xi is the position vector of agent i, vi is the velocity
vector of agent i, ui is the control input (acceleration) acting
on agent i. Denote x x x xT T

N
T T N= … ∈( , , , )1 2

2� and
v v v vT T

N
T T N= ∈( , , , )1 2

2… � to be the stack position and
velocity vectors of the entire system. Let ε ∈ (0, R] be a
small hysteresis constant. Initial links are generated
by E V( ) {( , ) | ( ) ( ) , , }0 0 0 0= − < − ∈i j x x R i ji j ε , where
0 < ε0 ≤ ε2.
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Furthermore, a dynamic leader is introduced to guide a
group of agents and treated as an ordinary agent by each agent
called a follower. Each follower can sense the information of the
dynamic leader if only if the distance between them is less than
the communication radius. The motion of the dynamic leader
is described by �x vl l= , where xl ∈ R2 and vl ∈ R2 denote the
position and velocity vectors of the dynamic leader. Here,
without loss of generality, it is assumed that �v fl 1 < , where f is
a positive constant.

The control objective here is to derive a set of bounded
distributed controllers using only local information to steer the
followers to achieve velocity consensus and collision avoidance
with the dynamic leader with time-varying velocity, while guar-
anteeing the connectivity of the underlying communication
graph as the system evolves, provided the given graph is initially
connected.

III. MAIN RESULTS

3.1 Leader-follower flocking algorithm with
connectivity preservation

It is worth noting that the algorithms in [8,25,26,30] are
feasible only when each follower can access the accurate accel-
eration information of the dynamic leader, i.e., �vl . However,
since not all the agents (robots, air vehicles, manipulators, etc.)
in practice are equipped with acceleration sensors, acceleration
measurements are more difficult to obtain than position and
velocity measurements. Moreover, an algorithm in the absence
of acceleration measurements has the advantage of decreasing
equipment cost and network traffic. Therefore, we are motivated
to design distributed connectivity-preserving leader-follower
flocking algorithms without using acceleration measurements.

To achieve the desired flocking motion, the explicit
bounded flocking control protocol for each follower i is devised
as follows:

u V x h V x

a a v v
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j
j l
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0

1
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otherwise
sgn(·) is the signum function,

α > 0 is the control gain, Vij, ∀ ∈j iN is the bounded interactive
APF between agents i and j which is to be designed.

Remark 1. Note that, inspired by [27,35], the sliding mode
control approach is adopted here to serve as a distributed esti-
mator for all the followers without acceleration measurements to
the dynamic leader. The asymptotic stable flocking behavior of

the entire system can be guaranteed by properly adjusting the
control gain α, the determination of which will be detailed later.
The distinguished features of the proposed control protocol (3)
lie in the removal of the mild connectivity requirement in [27,35]
and the bounded control force.

Then, define the positive semi-definite function energy
function as

ψ ( , , , ) ( ) ( )

( , )

x v x v v v v v

U x x
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where

U x x V x hV xi l ij ij

j
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i
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∈
≠

∑
N

2

Note that U contains all the existing follower-follower potentials
and the leader-follower tracking potentials, which have the
physical meaning of characterizing all the interactive potential
energy of the entire system.

Further, define Ψmax which satisfies

ψ max

max

( ( ) ( )) ( ( ) ( ))

( )

= − −

+ +
=
∑1

2
0 0 0 0

1

2

1

v v v v

N N
V

i l
T

i l

i

N

(5)

Remark 2. Note that the first term and the second term in (5)
indicate the initial kinetic energy and the possible maximum poten-
tial energy of the system, respectively. The combination of both
gives the total maximum mechanical energy and the overall leader-
follower multi-agent system in the context of the complete undi-
rected graph, which is vital for designing the bounded APF Vij.

In order to enable the overall system to achieve desired
stable flocking motion using only bounded control inputs, Vij(||xij||)
should be well designed to be a bounded and nonnegative poten-
tial of the distance of ||xij|| = ||xi − xj|| while integrating require-
ments of connectivity maintenance and collision avoidance, such
that:

1. Vij(||xij||) is continuously differentiable for ||xij|| ∈ (0, R);
2. Vij(||xij||) is monotonically decreasing for ||xij|| ∈ (0, d)

and monotonically increasing for ||xij|| ∈ (d, R), where
ε1 < d < R − ε2 and

3. Vij(0) = Ψmax and Vij(R) = Ψmax.

ψ max

max

( ( ) ( )) ( ( ) ( ))

( )

�
1

2
0 0 0 0

1

2

1

v v v v

N N V

i l
T

i l

i

N

− −

+ +
=
∑

(6)

where Vmax = max{V(ε1), V(R − ε2)} and
ε1

0 2
0=

∈
min { ( ) }
, ( )i j

ijx
E

.
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Condition (i) aims at producing smooth controller for each
agent; Condition (ii) illustrates that the potential Vij provides
an attractive or repulsive force between agents i and j when
their distance tends to R or zero. Clearly, Vij reaches its
minimum at ||xij|| = d; Condition (iii) states that the potential
will be sufficiently large when the distance between them
reaches R or zero, which can guarantee both connectivity
maintenance and collision avoidance. One candidate example
is given below

V x
x d R x

x
d R x

x x d

R x

ij
ij ij

ij
ij

ij ij

ij

( )
( ) ( )

( )

( )

( )

max

=
− −

+
−

+
−

−

2

2

2

ψ

++
−x R dij ( )

max

2

ψ

(7)

Note that in [14,16,17], two specific potential functions are
introduced and tend to infinity when the relative distance
between two agents i and j tends to R, which may not be practical
because of the infinitely large (unbounded) control effort.

Remark 3. Note that determination of ε1
0 2

0=
∈

min { ( ) }
, ( )i j

ijx
E

requires the global information of all the initial relative distances
between neighboring agents, however, the gossip algorithms
combined with auction-based consensus decision mechanisms in
[37] can be utilized to pre-determine ε1 in a totally distributed
fashion. The details of the algorithms are out of the scope of
current paper and hence omitted here to save space.

Remark 4. From Fig. 1 and (7), one can obtain that both Vij and
its gradient-based term are bounded. α is the bounded control
gain. Furthermore, since the signum function sgn(·) is also
bounded in [−1,1], the control input (3) for each agent is bounded
by considering both connectivity maintenance and collision
avoidance, which is different from the existing second-order
leader-follower flocking algorithms in [8,25,26,30].

3.2 Stability analysis

Assume that G( )t switches at time tk, k = 1, 2, . . . and
t0 = 0, recall that the link hysteresis mechanism introduces a
dwell time τ > 0 between consecutive switches in the network
topology. Then the main result is then stated in the following
theorem.

Theorem 1. Consider a second-order multi-agent system that
consists of N followers and a dynamic leader moving with
dynamics (2), and with the followers steered by protocol (3).
Suppose that the initial communication graph G( )0 is connected,
the initial energy ψ(0) is finite, tk − tk−1 > τ > 0 for all switching
times tk and the control gain α > f/||(L(0) + H(0))||1. Then G( )t
will remain to be connected for all t ≥ 0, all the agents asymp-
totically attain the same velocity with the dynamic leader with
guaranteed collision avoidance.

Proof. Denote the position difference and the velocity differ-
ence between follower i and the dynamic virtual leader l as
�x x xi i l= − and �v v vi i l= − , respectively. Then we have
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Moreover, (4) can be rewritten as
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where � � … �x x xT
N
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During [0, t1), since ψ(0) is finite, take the time derivative
of ψ, we have
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Fig. 1. An example of Vij with R = 10, d = 6 and Ψmax = 100.
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which implies that Ψ(t) ≤ Ψ(0) < Ψmax, ∀t ∈ [0, t1). Therefore, no
distance of existing edges will tend to R and no distance of
neighboring agents will tend to 0 for t ∈ [0, t1). Otherwise from
(7), Vij(0) = Ψmax > Ψmax, Vij(R) = Ψmax > Ψmax, which results in
contradiction. Therefore, no collisions will occur and no existing
edges will be lost before time t1. Therefore, new edges must be
added to the underlying network at the switching time t1. Note
that the hysteresis ensures that if a finite number of edges are
added to G( )t , then the associated potential remains finite, thus
ψ(t1) is finite.

From Lemma 1 and α > f/||L(0) + H(0)||1, it follows that
α > f/||L(tk−1) + H(tk−1)||1. Similar to the above analysis, on each
[tk−1, tk), taking the time derivative of ψ, we have

� � �

� �

ψ α

α

= − +( ) +( )[ ]

−

≤ −

− −

=
∑
v L H t L H t v

v v

f

T
k k

i
T

l

i

N

( )( ) sgn ( )( )1 1

1

(( )( )L H t vk+( ) ≤−1 1 1 0�

(11)

which implies that

ψ ψ ψ( ) ( )

[ , ), , ,
maxt t

t t t k
k

k k

≤ <
∀ ∈ = …

−

−

1

1 2 3
(12)

Then, following the same analysis, since ψ(t) is bounded for all
t ≥ 0, no distance of existing edges will tend to R or zero as the
system evolves, which indicates that no edges will be lost and no
collisions among neighboring agents will occur for all t ∈ [tk−1,
tk), and ψ(tk) is finite. Because is connected and no edges in E( )0
were lost, will remain connected for all t ≥ 0.

Suppose there are Nk new links being added to G( )t at tk, it
is known that 0 1 2 1 2< ≤ + − = −N N N N N N Nk ( ) / ( ) / � ,
from (4) and (11), we have

ψ ψ ε ψ( ) ( ) ( ) ( ) maxt N N V Rk k≤ + + + − <0 1 2� (13)

Due to the fact that there are at most N new links that can be
added for any initially connected network, we have N Nk < and
Ψ(t) < Ψmax, ∀t ≥ 0. Thus, the number of switching times k is
finite, which implies G( )t finally becomes fixed. Therefore, the
following discussions are restricted on the time interval [tk, +∞),
note that all the edges are no longer than V−1(Ψmax) due to the
monotonically increasing feature of V in [d, R) defined in (7).
Further define the level set

Ω = ∈ ∈ ≤{ , | ( , ) }max� � � �x D v R x vN2 ψ ψ

which is a positively invariant set, where

D x R x x V

i j t

N
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where � � � � � � � �x x x x xT
N

T
N
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NN
T T= [ , , , , , , ]11 1 1 .

As G( )t is connected for all t ≥ 0, it follows that
� �x x N Ri j− ≤ −

2
1( ) for all agents i and j. Due to the fact that

Ψ(t) < Ψmax, we have �v ii 2 2< ∀ψ max , . Hence, Ω is closed and

bounded, therefore compact. Note that system (2) with control
input (3) is an autonomous system on the concerned time interval
[tk, ∞). Therefore, it follows from the LaSalle invariance princi-
ple for nonsmooth systems [41] that the trajectories will con-
verge to the largest invariant set inside the region

S x D v RN= ∈ ∈ ={ , | }� � �ψ 0 (14)

From (11), � � �ψ = ⇔ = ⇔ = = =0 01 1v v v vN l, which implies
the velocities of all the followers will converge to that of the virtual
leader asymptotically. Since v1 = . . . = vN = vl, it can be easily

deduced that
d x

dt
x v v i j t

ij
ij
T

i j
2

2

2 0= − = ∀ ∈( ) , ( , ) ( )E , which

indicates that the interagent distance is stabilized in steady state.

IV. SIMULATION AND EXPERIMENT

4.1 Simulation

In this subsection, comparative numerical simulations are
performed to compare our leader-follower connectivity mainte-
nance flocking algorithm with the flocking algorithms proposed
by [8,25,26] in the same initial state. For simplicity and without
loss of generality, the simulations are performed with five agents
moving in the plane, the initial positions of all agents are set
within the box of [0, 10] m × [0, 10] m such that the communi-
cation network is initially connected, and the initial velocities
of all agents are chosen randomly in the box of [−5, 5] m/s ×
[−5, 5] m/s. Therefore, the velocity bound for all the agents
is vmax = 5 m/s.

It is assumed that the initial time t0 = 0s and the simula-
tions are run for a time period of 60 s, where the dynamic leader
follows a circular trajectory tracking and a sine shape trajectory
tracking, respectively. The specific dynamics of the leader are
given as below:

u t tl
T T= − −3 1 0 3 0 1cos( )[ , ] sin( )[ , ] (15)

while the remaining followers apply control protocols (3).
Furthermore, the potential function V is defined in (7) with the
communication radius fixed at R = 1 m, the desired distance
d = 0.5 m and ε0 = ε2 = 0.1, ε1 = 0.3. The control gain α is set to 10.
Some simple calculations give that Vmax = V(R − ε2). Then we have
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Therefore, Ψmax can be evaluated by using an estimate of the
bound of the initial velocities of all the agents, and one gets
Ψmax ≤ 50.3. Then we further have the explicit form of the
bounded potential function

V x
x x

x
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x x

x

ij ij
ij ij

ij
ij

ij ij
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(17)

Then substituting (17) into (3) yields the final explicit controllers
for all the followers.

Fig. 2 depicts the consecutive snapshots of the agent con-
figurations throughout the simulation to illustrate the process of
flocking with a dynamic leader following the circular curve
under the control law (3), respectively. All the followers are
labeled with blue dots and the dynamic leader is labeled with
large solid red dot whose dynamics is independent of all the other
agents. The black solid lines denote the communication links and
the black solid lines with arrows represent the velocities of all
agents. The thick green line denotes the desired trajectory fol-
lowed by the dynamic leader, which is a circle centered at (5,
5)T m with radius Rc = 3 m. The initial position of the dynamic
leader is set as [5, 2]T m, which is located at the bottom of the
circle.

Fig. 3 shows the evolving curve of the algebraic connec-
tivity of the underlying communication network. It can be seen
that for either case, as the dynamic leader traverses a trajectory
through the workspace the remaining followers attempt to
maintain and increase network connectivity while avoiding
interagent collisions. Fig. 4 and Fig. 5 show the comparative
results of the velocity curves of all agents for circular trajectory
tracking under control law (3) with the control laws in
[8,25,26], respectively. The curves of the control inputs of all
followers are ploted in Fig. 6. It can be clearly seen that for the
same initial states, the algorithms proposed in [8,25,26] can not
guarantee velocity consensus of all followers with the dynamic
leader without acceleration measurements, which results in
failure in tracking the dynamic leader as well as the stable
flocking motion. On the contrary, with our proposed control
protocol (3), the velocities asymptotically obtain the same as
the dynamic leader without collisions in either case. The stable
group flocking behavior is generated eventually with only
bounded control inputs, which verifies the effectiveness and
demonstrates the advantage of our presented control algorithm.

4.2 Experiment

Finally, the experimental verification for leader-follower
flocking with real mobile robots is conducted in a real indoor
environment, we use five wheeled mobile robots which consist of
2 Pioneer 3-AT robots and 3 Amigobots. The initial positions of
the robots are chosen randomly from the boxes of [0, 9] m × [0,
9] m such that the neighboring graph is initially connected. The
initial velocities of the robots are randomly chosen in the boxes
of [−2, 2] m/s × [−2, 2] m/s. Each robot can obtain the informa-
tion needed via its wireless communication equipment and the
sensing equipment, and the control period is Δ(t) = 0.05s. The
following parameters remain fixed through the experiments:
R = 4, d = 2, δ = 0.8, ε0 = ε2 = 0.3, ε1 = 0.8, α = 1.5. Following
the same analysis, we can get Ψmax = 408.35 and the final explicit
form of the bounded APF as below

Fig. 2. Flocking with a dynamic leader following a circular
curve.

Fig. 3. Algebraic connectivity under (3) following a circular
curve.
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Fig. 4. Velocities of all agents for circular tracking using (3).

Fig. 5. Velocities of all agents for circular tracking using [28].

Fig. 6. Velocities of all agents for circular tracking without using (3).
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Fig. 7 illustrates three consecutive snapshots during the
whole process of leader-follower flocking within a time frame of
30 seconds. Without loss of generality, the initially connected
topology consists of 4 followers and 1 dynamic leader which is
shown in Fig. 7a. The dynamics of the leader are set as vl(0) = [1,
0.5]T m/s and ul(t) = [0.1, 0.05]T m2/s. The respective graphical
elaborations better illustrate the robots connections, in particular,
the yellow lines show the communication links among the

neighboring robots, the numbers beside every robot denotes dif-
ferent IDs of the robots. In addition, the dynamic leader is
denoted by a capital “L”. Fig. 7b demonstrates that the initially
sparsely connected agents are moving towards the dynamic
leader and become a cohesively connected group without colli-
sions due to the attraction and repulsion forces generated by the
interactive potentials. Fig. 7c depicts the final state which shows
that all the followers move coherently with the dynamic leader.
The velocity curves of all the agents are shown in Fig. 8. The
relative distances between each follower and the leader are
depicted in Fig. 9, where followers 1−4 refer to robots 2−5
respectively. Fig. 10 plots the evolving curve of algebraic con-
nectivity of the underlying communication network. The magni-
tudes of the control inputs of all the followers are plotted in
Fig. 11, which are bounded throughout the process of system

Fig. 7. Flocking experiment of 5 wheeled mobile robots in indoor environment with a dynamic leader.
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evolution. It can be observed that the velocities of all the
followers obtain the same as that of the dynamic leader with
guaranteed connectivity maintenance, thus the stable desired
flocking behavior is successfully achieved eventually using
bounded control inputs, which is consistent with the theoretical
results.

V. CONCLUSION AND FUTURE WORK

Distributed leader-follower flocking algorithms with con-
nectivity preservation for second-order multi-agent systems
using bounded control inputs were presented, and only
partial measurements of the states of the dynamic leader are
available to the followers. First, a novel class of smooth and
bounded APFs was introduced to generate the attractive
and repulsive effects of the controller to navigate the followers,
which could guarantee connectivity maintenance, collision
avoidance and distance stabilization, simultaneously. Moreover,
in the absence of acceleration measurements of the dynamic
leader to each follower, a set of provably stable leader-follower
local flocking control protocols was carefully designed for all the
followers to track the dynamic leader with a time-varying veloc-
ity through a combination of the variable structure control tech-
nique with the potential-based gradient decent methodology
accounting for unavailability of the acceleration measurements.
On condition that the underlying communication network is ini-
tially connected, sufficient conditions related to the control gain
were derived for all the followers to asymptotically achieve
velocity consensus and collision avoidance with the dynamic
leader with guaranteed global connectivity maintenance and dis-
tance stabilization, implying the generation of the desired stable
flocking behavior eventually. Finally, the effectiveness of the
proposed controllers were verified by extensive illustrative simu-
lations and experiments which were shown to be well consistent
with the theoretical results.

Fig. 8. Velocity curves of all the robots.

Fig. 9. Relative distances between all followers and the leader.

Fig. 10. Algebraic connectivity of the underlying
communication network.
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While the current work complements some existing
results in the literature, there are some issues that need to be
addressed in the future. First, it will be interesting and chal-
lenging to extend the proposed bounded APFs to more complex
environmental settings with multiple static/moving obstacles.
Second, it will be interesting also to derive convergence con-
ditions under which the flocking behavior can still be achieved
in the presence of time delay and random noise, which play an
important role in real-world applications. In addition, bounded
flocking algorithms for nonlinear multi-agent dynamic systems
on directed networks are promising directions deserving further
investigations.

REFERENCES

1. Zavlanos, M. M., M. B. Egerstedt, and G. J. Pappas,
“Graph-theoretic connectivity control of mobile robot
networks,” Proc. IEEE, Vol. 99, No. 9, pp. 215–233
(2011).

2. Reynolds, C. W., “Flocks, herds, and schools: a distributed
behavioural model,” Comput. Graph., Vol. 21, pp. 25–34
(1987).

3. Vicsek, T., A. Czirook, E. Ben-Jacob, O. Cohen, and I.
Shochet, “Novel type of phase transition in a system of
self-deriven particles,” Phys. Rev. Lett., Vol. 75, No. 6, pp.
1226–1229 (1995).

4. Tanner, H. G., A. Jadbabaie, and G. J. Pappas, “Flocking in
fixed and switching networks,” IEEE Trans. Autom. Control,
Vol. 52, No. 5, pp. 863–868 (2007).

5. Ren, W. and R. W. Beard, Distributed Consensus in
Multivehicle Cooperative Control: Theory and applications,
Springer, Berlin (2007).

6. Du, H., S. Li, and S. Ding, “Bounded consensus algorithms
for multi-agent systems in directed Networks,” Asian J.
Control, Vol. 15, No. 1, pp. 282–291 (2013).

7. Jadbabaie, A., J. Lin, and A. S. Morse, “Coordination of
groups of mobile agents using nearest neighbor rules,”
IEEE Trans. Autom. Control, Vol. 48, No. 6, pp. 988–1001
(2003).

8. Olfati-Saber, R., “Flocking for multi-agent dynamic
systems: algorithms and theory,” IEEE Trans. Autom.
Control, Vol. 51, No. 3, pp. 401–420 (2006).

9. Su, H., X. Wang, and W. Yang, “Flocking in multi-agent
aystems with multiple virtual leaders,” Asian J. Control, Vol.
10, No. 2, pp. 238–245 (2008).

10. Spanos, D. P. and R. M. Murray, “Robust connectivity of
networked vehicles,” Proc. 42rd IEEE Conf. Decis. Control,
Pasadena, CA, pp. 2893–2899 (2004).

11. Kim, Y. and M. Mesbahi, “On maximizing the second
smallest eigenvalue of a state-dependent graph Laplacian,”
IEEE Trans. Autom. Control, Vol. 51, No. 1, pp. 116–120
(2006).

12. Zavlanos, M. M. and G. J. Pappas, “Potential fields for
maintaining connectivity of mobile networks,” IEEE Trans.
Robot., Vol. 23, No. 4, pp. 812–816 (2007).

13. Ji, M. and M. Egerstedt, “Distributed formation control
while preserving connectedness,” Proc. 45th IEEE Conf.
Decis. Control, San Diego, CA, pp. 5962–5967 (2006).

14. Ji, M. and M. Egerstedt, “Distributed coordination control
of multiagent systems while preserving connectedness,”
IEEE Trans. Robot., Vol. 23, No. 4, pp. 693–703 (2007).

15. DeGennaro, M. C. and A. Jadbabaie, “Decentralized control
of connectivity for multiagent systems,” Proc. 45th IEEE
Conf. Decis. Control, San Diego, CA, pp. 3628–3633
(2006).

16. Zavlanos, M. M. and G. J. Pappas, “Flocking while preserv-
ing network connectivity,” Proc. 46th IEEE Conf. Decis.
Control, New Orleans, LA, pp. 2919–2924 (2007).

17. Zavlanos, M. M., H. G. Tanner, A. Jadbabaie, and G. J.
Pappas, “Hybrid control for connectivity preserving flock-
ing,” IEEE Trans. Autom. Control, Vol. 54, No. 12, pp. 2869–
2875 (2009).

18. Dimarogonas, D. V. and K. J. Kyriakopoulos, “Connected-
ness preserving distributed swarm aggregation for multiple
kinematic robots,” IEEE Trans. Robot., Vol. 24, No. 5, pp.
1213–1223 (2008).

19. Su, H., X. Wang, and G. Chen, “A connectivity-preserving
flocking algorithm for multi-agent systems based only on

Fig. 11. The magnitudes of the bounded control inputs of all followers.

313

© 2014 Chinese Automatic Control Society and Wiley Publishing Asia Pty Ltd

Y. Mao et al.: Bounded Connectivity-Preserving Leader-Follower Flocking Algorithms Without Acceleration Measurements



position measurements,” Int. J. Control, Vol. 82, No. 7, pp.
1334–1343 (2009).

20. Savla, K., G. Notsrstefano, and F. Bullo, “Maintaining
limited-range connectivity among second-order agents,”
SIAM J. Control Optim., Vol. 15, No. 5, pp. 187–205
(2009).

21. Li, X. and Y. Xi, “Distributed cooperative coverage and
connectivity maintenance for mobile sensing devices,” Proc.
48th IEEE Conf. Decis. Control, Shanghai, China, pp. 7891–
7896 (2009).

22. Yang, P., R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S.
Srinivasa, and R. Sukthankar, “Decentralized estimation
and control of graph connectivity for mobile sensor net-
works,” Automatica, Vol. 46, No. pp. 390–396 (2010).

23. Su, H., X. Wang, G. Chen, and Z. Lin, “Adaptive second-
order consensus of networked mobile agents with nonlinear
dynamics,” Automatica, Vol. 47, No. 2, pp. 368–375 (2011).

24. Wang, Z. and D. Gu, “Distributed leader-follower flocking
control,” Asian J. Control, Vol. 11, No. 4, pp. 396–406
(2009).

25. Shi, H., L. Wang, and T. Chu, “Flocking of multi-agent
systems with a dynamic virtual leader,” Int. J. Control, Vol.
82, No. 1, pp. 43–58 (2009).

26. Su, H., X. Wang, and Z. Lin, “Flocking of multi-agents with
a virtual leader,” IEEE Trans. Autom. Control, Vol. 54, No. 2,
pp. 293–307 (2009).

27. Cao, Y. and R. Wei, “Distributed coordinated tracking with
reduced interaction via a variable structure approach,” IEEE
Trans. Autom. Control, Vol. 57, No. 1, pp. 33–48 (2012).

28. Wang, L., X. Wang, and X. Hu, “Connectivity preserving
flocking without velocity measurement,” Asian J. Control,
Vol. 15, No. 2, pp. 521–532 (2013).

29. Dimarogonas, D. V. and K. H. Johansson, “Bounded control
of network connectivity in multi-agent systems,” IET Contr.
Theory Appl., Vol. 4, No. 8, pp. 1330–1338 (2010).

30. Su, H., X. Wang, and G. Chen, “Rendezvous of multiple
mobile agents with preserved network connectivity,” Syst.
Control Lett., Vol. 59, No. 5, pp. 313–322 (2010).

31. Ajorlou, A., A. Momeni, and A. G. Aghdam, “A Class of
bounded distributed control strategies of connectivity

preservation in multi-agent systems,” IEEE Trans. Autom.
Control, Vol. 55, No. 12, pp. 2828–2832 (2010).

32. Kan, Z., A. P. Dani, J. M. Shea, and W. E. Dixon, “Ensuring
Network Connectivity during formation Control using a
decentralized navigation function,” The 2010 Military
Commun. Conf., San Jose, CA, pp. 531–536 (2010).

33. Kan, Z., A. P. Dani, J. M. Shea, and W. E. Dixon, “Network
connectivity preserving formation stabilization and obstacle
avoidance via a decentralized controller,” IEEE Trans.
Autom. Control, Vol. 57, No. 7, pp. 1827–1832 (2012).

34. Wen, G., Z. Duan, H. Su, G. Chen, and W. Yu, “A
Connectivity-preserving flocking algorithm for multi-
agent dynamical systems with bounded potential
function,” IET Contr. Theory Appl., Vol. 6, No. 6, pp. 813–
821 (2013).

35. Chen, F., Y. Cao, and W. Ren, “Distributed average tracking
of multiple time-varying reference signals with bounded
derivatives,” IEEE Trans. Autom. Control, Vol. 8, No. 12, pp.
3169–3174 (2012).

36. Dimarogonas, D. V. and K. J. Kyriakopoulos, “On the ren-
dezvous problem for multiple nonholonomic agents,”
IEEE Trans. Autom. Control, Vol. 52, No. 5, pp. 916–922
(2007).

37. Zavlanos, M. M. and G. J. Pappas, “Distributed connectivity
control of mobile networks,” IEEE Trans. Robot., Vol. 24,
No. 6, pp. 1–12 (2008).

38. Song, C., G. Feng, and Y. Wang, “Decentralized Dynamic
Coverage Control for Mobile Sensor Networks in a Non-
convex Environment,” Asian J. Control, Vol. 15, No. 2, pp.
512–520 (2013).

39. Liu, L., “Adaptive control of a class of nonlinear systems
with its application to a synchronization problem,” Asian J.
Control, Vol. 14, No. 6, pp. 1698–1705 (2012).

40. Do, K. D., “Formation control of multiple elliptic agents
with limited sensing ranges,” Asian J. Control, Vol. 14, No.
6, pp. 1514–1526 (2012).

41. Clarke, F. H., Optimization and Nonsmooth Analysis, SIAM,
Philadelphia (1990).

42. Godsil, C. and G. Royle, Algebraic Graph Theory, Springer,
Berlin (2001).

Asian Journal of Control, Vol. 17, No. 1, pp. , January 2015304–314314

© 2014 Chinese Automatic Control Society and Wiley Publishing Asia Pty Ltd


