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Abstract: The stability problem of a linear dynamic quantised system with time-varying delay and packet losses is studied
in this article. An optimal dynamic quantiser which is able to minimise the maximum output error between the quantised
system and unquantised systems is designed, and the minimum upper bound of the quantised error is also given. Moreover,
the system is lifted into a switched system for stability analysis and a sufficient condition for asymptotic stability is developed
in terms of matrix inequalities. Finally, an illustrative example demonstrates the effectiveness of the proposed method.
1 Introduction

In the last few years, studies of quantised control systems
have expanded rapidly. An extensive use of computer-aided
control systems and the emerging of networked control,
where information has to be transmitted through network
with limited capacities, becomes important for us to focus
studies on data quantisation.

Analysis on quantised control systems was firstly raised
in [1], where Kalman firstly studied the quantisation effects.
For early studies, efforts were mainly put on interpreting
quantised efforts brought by the quantiser. For example, in
[2, 3], the quantised variable provides information in a range
of values that the unquantised variable may take. As the
quantiser is an indispensable part of the quantised control
systems, it is necessary to design the quantiser according to
the systems. As a result, two representative kinds of quan-
tised control systems have been studied: the static quantised
systems and the dynamic quantised systems.

For static quantised control systems, parameters of the
quantisers stay invariant when the systems evolve. In [4–6],
quadratic stabilisation of discrete-time systems by means of
static logarithmic quantisers was studied. Stabilisability of
a linear discrete-time system with finite feedback data rates
was investigated in [7], where it was shown that the opti-
mal finite horizon coder controller is essentially an optimal
quantiser for the initial output, and this work was further
developed in [8]. Tradeoffs between quantiser complexity
and system performance for scalar systems were analysed in
[9, 10]. The coarsest quantiser that can stabilise a discrete-
time linear system with stochastic packet loss was derived in
[11, 12]. Fridman and Dambrine [13] have studied the design
of delayed controller under quantisation where the quantised
error was bounded by a given constant. And Wang et al. [14]
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considered H∞ filtering problem with missing measurements
and quantised effects.

Compared with static quantisers, dynamic quantisers gen-
erally have better performance as parameters of them vary
when the systems evolve. For this reason, dynamic quantised
systems have been studied in recent years. In [15] a novel
optimal dynamic quantiser was proposed, which was able to
minimise the quantised error in the sense of the input–output
relation. Besides, the dynamic quantised system considered
in [15] performed well and can realise an optimal approx-
imation of a given linear system. Such a quantised system
was further studied in [16, 17], where stability of the sys-
tem is considered. For the dynamic quantiser proposed in
[15–17], there exist several examples to demonstrate that it
can achieve good control performance [18–21]. Especially,
in [21] an experimental comparison has been made between
the optimal dynamic quantiser and the static uniform quan-
tiser. Experimental results have confirmed that the optimal
dynamic quantiser has a better control performance than the
static quantiser. However, asymptotic stability of the quan-
tised system was not investigated in [15–21] because the
quantised error cannot be ultimately eliminated. Meanwhile,
an effective scaling factor was proposed in [22, 23], using
which asymptotic stability of dynamic quantised systems can
be achieved. By introducing scaling factor to the optimal
dynamic quantiser in [15–17], asymptotic stability can also
be guaranteed for the given system. Moreover, time-varying
delay and packet loss are not considered in these works,
which are usually inevitable especially when signals in the
system are transmitted through a communication network
[24, 25]. The above observations motivate our study.

The main contributions of this paper are as follows.
Firstly, by re-designing parameters of the quantiser pro-
posed in [15–17] and introducing a scaling factor proposed
IET Control Theory Appl., 2015, Vol. 9, Iss. 6, pp. 988–995
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Fig. 1 Dynamic quantised system with time-varying delay and
packet loss

in [22, 23], a new optimal quantiser that can both minimise
the maximum output error and achieve asymptotic stabil-
ity is obtained. Secondly, networked delay and packet loss
have been considered in our paper, which are inevitable for
systems with signals transmitted through a communication
network. Finally, asymptotic stability has been considered in
our paper and a sufficient condition for asymptotic stability
is given in Theorem 2.

The paper is organised as follows. Section 2 introduces
the dynamic quantised system with time-varying delay and
packet losses. Section 3 presents an optimal dynamic quan-
tiser that is able to minimise upper bound of the maximum
output error. Section 4 studies stability of our system by
‘lifting’ it into a switched system [26–31]. Section 5 gives
an illustrative example and Section 6 concludes this article.

2 Dynamic quantised system with
time-varying delay and packet losses

Consider the discrete-time system as shown in Fig. 1, where
the linear plant P is given by

P :

{
x(k + 1) = Ax(k) + Bv∗(k)

y(k) = Cx(k)
(1)

where the state x ∈ Rn, the control input v∗ ∈ Rl and the
output y ∈ Rp. A ∈ Rn×n, B ∈ Rn×l and C ∈ Rp×n are system
matrices. The initial state is given as x(0) = x0 for x0 ∈ Rn.

As depicted in Fig. 1, there exist time-varying delay and
packet loss in the feedback channel of the system, where the
time-varying delay d(k) satisfies

d1 ≤ d(k) ≤ d2 (2)

where d1 and d2 are known positive integers.
Meanwhile, packet losses here are modelled by the vari-

able δ(k) which satisfies

δ(k) =
{

0 if v(k) is: received
1 if v(k) is: lost

(3)

where v(k) is the output of Q∗.
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Assume that the maximum consecutive number of packet
losses is m, that is

k∑
l=k−m

δ(l) ≤ m (4)

which means that for m + 1 successive control updates, at
least one is available for the actuator.

The dynamic quantiser Q∗ used for quantisation can be
given as [15]

Q∗ :

{
ξ(k + 1) = Aξ(k) + B(v(k) − u(k))

v(k) = qμ(Cξ(k) + u(k))
(5)

where ξ ∈ Rn is the state, u ∈ Rl is the input and v ∈ Vl is
the output, V ⊂ R is the quantisation set.

A, B and C are system matrices of the quantiser, which
will be designed in the next section. The initial state is
ξ(0) = 0, and we set v(k) = 0 when u(k) = 0. qμ in (5)
is a scaling quantiser [22] in the form of

qμ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ(k)M if
x

μ(k)
> M − �

2

−μ(k)M if
x

μ(k)
≤ −M + �

2⌊
x

�μ(k)
+ 1

2

⌋
�μ(k) if

|x|
μ(k)

≤ M − �

2
(6)

where � is the quantiser sensitivity and M is the saturation
value. For �a� = ã, it represents the biggest integer satisfy-
ing ã ≤ a. μ(k) is the scaling factor that is monotonically
non-increasing, which will be considered later in our paper.
For the quantiser (6), it has the following properties

If |x| ≤ Mμ(k), then |qμ(x) − x| ≤ �μ(k)

2
(7)

If |x| > Mμ(k), then |qμ(x)| > Mμ(k) − �μ(k)

2
(8)

Remark 1: In our paper, by bringing in scaling factor μ(k)
[22, 23] to the static part of the dynamic quantiser raised in
[15], the quantised error can be ultimately eliminated, which
will be considered later in our paper. Besides, the bringing in
of saturation value M makes the quantiser more realisable.

Here u(k) is the output of the state feedback controller
which is denoted by

u(k) = Kx(k) (9)

where K ∈ Rl×n is the state feedback gain.
For the input v∗(k) of the plant P, we have the following

lemma.

Lemma 1: Consider the dynamic quantised system �d with
time-varying delay and packet losses defined in (2)–(4), then
the input v∗(k) of P is described by

v∗(k) = v (max{0, k − hk}) (10)

where hk ∈ {d1, d1 + 1, . . . , d2 + m} is (see (11))
hk = min {d1 + [δ(k − d1) + sgn[max{0, d(k − d1) − d1}]] (d2 + m), (d1 + 1)

+ [δ(k − (d1 + 1)) + sgn[max{0, d(k − (d1 + 1)) − (d1 + 1)}]] (d2 + m), . . . , (d2 + m)

+ [δ(k − (d2 + m)) + sgn[max{0, d(k − (d2 + m)) − (d2 + m)}]] (d2 + m)} (11)
989
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Proof: The proof is given in the Appendix. �

As is shown in (10), since the output v(k) of the dynamic
quantiser (5) is transmitted through the input channel with
delay and packet loss, it is necessary for us to choose which
signal should be implemented at each instant. Therefore (10)
is given to choose the newest control input at each instant
for P.

3 Optimal quantiser design

In this section, parameters of the dynamic quantiser (5)
are designed to obtain the optimal quantiser that is able to
minimise the maximum output error for the system �d .

In Fig. 2, � is an usual system with the same P, K as
�d and v(k) = u(k). Moreover, both � and �d share the
same time-varying delay and packet losses process. That is,
these two systems are the same at the beginning, and they
are equivalent if v(k) = u(k) for �d .

Definition 1: The maximum output error between y(k) and
y∗(k) is

Er(Q∗) = max
k∈Z+

‖y(k , x0) − y∗(k , x0)‖ (12)

where y(k) is the output of �d and y∗(k) is the output of �
at time k , with the initial state x(0) = x0.

Remark 2: Such a definition of Er(Q∗) aims at measuring
the difference between the output of the dynamic quantised
system �d and the system �. By designing parameters of
(5), we can minimise the upper bound of Er(Q∗), and realise
optimal tracking of the system � in the sense of input–
output relation.

Throughout this paper, we assume that the following
assumption satisfies [15].

Assumption 1: l = p (the dimensions of v and y are the
same) and the matrix CB is non-singular.

Remark 3: It is clear that Assumption 1 stands if matrix
CB is invertible. There are a number of real-world systems
that satisfy this assumption, such as DC servo systems con-
sidered in [32, 33], switched bimodal mechanical systems
considered in [31] and micro-/nanopositioning system stud-
ied in [35]. Besides, for SISO systems this assumption is

Fig. 2 Usual system with time-varying delay and packet loss
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valid when CB 
= 0 [32, 34, 35], which is not difficult to be
satisfied.

For the system �d , an optimal quantiser that is able
to minimise the maximum output error can be obtained
according to the following theorem.

Theorem 1: The optimal quantiser of the system �d can be
given as

Q∗ :

{
ξ(k + 1) = Aξ(k) − Bu(k) + Bv(k)

v(k) = qμ(CQξ(k) + u(k))
(13)

and the upper bound of the maximum output error can be
minimised by

Er(Q∗) ≤ ‖CB‖�μ(0)

2
(14)

where CQ = −(CB)−1CA.

Proof: As shown in (10), control input of P at the time
instant k is hk steps later than output of Q∗. Therefore rewrite
(5) as

Q∗:

{
ξ(k − hk + 1) = Aξ(k − hk) + B(v(k − hk) − u(k − hk))

v(k − hk) = qμ(Cξ(k − hk) + u(k − hk))
(15)

where hk ∈ {d1, d1 + 1, . . . , d2 + m}.
Let

z(k) =

⎡
⎢⎢⎣

x(k)
ξ(k − d1)

...
ξ(k − d2 − m)

⎤
⎥⎥⎦ ,

Āi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i+d1−2︷ ︸︸ ︷
A 0 . . . 0 BC . . . 0
0 A + BC . . . 0 0 . . . 0
...

...
. . .

...
...

0 0 . . . 0 A + BC . . . 0
...

...
...

...
. . .

...
0 0 . . . 0 0 . . . A + BC

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ād =

⎡
⎢⎢⎣

BK . . . 0
0 . . . 0
...

. . .
...

0 . . . 0

⎤
⎥⎥⎦ , B̄ =

⎡
⎢⎣B

. . .
B

⎤
⎥⎦ ,

W (i, k) =

⎡
⎢⎢⎣

ω(k − i)
ω(k − d1)

...
ω(k − d2 − m)

⎤
⎥⎥⎦

C̄ = [
C 0 · · · 0

]
,

ω(k) = qμ(Cξ(k) + u(k)) − (Cξ(k) + u(k))

where i = 1, 2, 3, . . . , d2 + m − d1 + 1.
Put (1), (9), (10) and (15) together to have �d be given

as a switched system{
z(k + 1) = Āσ(k)z(k) + Ādz(k − hk) + B̄W (σ (k), k)

y(k) = C̄z(k)
(16)

where the state matrix Āσ(k) switches in the set of pos-
sible matrices {Ād1 . . . Ād2+m} according to the parameter
IET Control Theory Appl., 2015, Vol. 9, Iss. 6, pp. 988–995
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σ(k) called the switching function, which takes value from
the finite index set F = {1, 2, 3, . . . , d2 + m − d1 + 1}. More-
over, W (σ (k), k) is the error vector decided by the pair
(σ (k), k).

� is expressed as{
x(k + 1) = Ax(k) + BKx(k − hk)

y∗(k) = Cx(k)
(17)

Therefore difference between y∗(T , x0) and y(T , x0)
(T ∈ Z+) is

y∗(T , x0) − y(T , x0)

= CAT x0 + C
s−1∑
j=0

AjBKx((T − hk − 1) − j)

− C̄ĀT
σ(k)

[
x0 0 . . . 0

]T

− C̄
s−1∑
j=0

Āj
σ(k)Ādz((T − hk − 1) − j)

− C̄
T−1∑
l=0

Ā(T−1)−l
σ(k) B̄W (σ (k), l)

= −C̄
T−1∑
l=0

Ā(T−1)−l
σ(k) B̄W (σ (k), l) (18)

where s = T − hk .
In our paper, by using the ‘zooming’ method that will

be considered in the next section, the scaling factor μ(k)
is designed to guarantee that the quantised saturation will
never happen. By designing μ(k) to be monotonically non-
increasing, we can obtain μ(0) = max{k ∈ Z : μ(k)}, which
means the quantised error is always smaller than [�μ(0)]/2.

Then it is clear that

‖y∗(T , x0) − y(T , x0)‖ ≤
∥∥∥∥∥

T−1∑
l=0

C̄Ā(T−1)−l
σ(k) B̄Ī

∥∥∥∥∥ �μ(0)

2

=
∥∥∥∥∥CB +

T−1∑
l=1

C̄Ā(T−1)−l
σ(k) B̄Ī

∥∥∥∥∥ �μ(0)

2
(19)

where Ī = [I · · · I ]T.
Moreover, when A = A, B = B, C = CQ, we can obtain

C̄Āl
σ(k)B̄Ī = 0 (l = 1, 2, . . . , ∞), which means the latter part

of (19) is minimised, and therefore it can be given that

Er(Q∗) ≤ ‖CB‖�μ(0)

2
(20)

As a result, upper bound of the maximum output error
Er(Q∗) between �d and � is minimised, we can obtain the
optimal quantiser (13) of the system �d , and the smallest
upper bound of Er(Q∗) is given in (20). �

Remark 4: Theorem 1 is an extension of results in [15], we
have proved that quantiser (13) is optimal for our dynamic
quantised system �d with time-varying delay and packet
losses. The pair {A, B, C} in (13) is the same as that in [15].
However, as we use the scaling quantiser qμ in this paper
instead of traditionally static quantiser in [15], the optimal
quantiser (13) is different from that in [15].
IET Control Theory Appl., 2015, Vol. 9, Iss. 6, pp. 988–995
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4 Stability analysis

In this section, a sufficient stability condition for �d is
derived by using the lifting method. We employ both Lya-
punov function and the ‘zooming-in’ and ‘zooming-out’
approaches for stability analysis.

Firstly, let

ς(k) =
[

x(k)
ξ(k)

]
, Ã =

[
A 0
0 A + BCQ

]
, B̃ =

[
B 0
0 B

]

Ãd =
[

BK BCQ

0 0

]
, W̃ (k) =

[
ω(k − hk)

ω(k)

]
, C̃ = [

C 0
]

system �d can be obtained as{
ς(k + 1) = Ãς(k) + Ãdς(k − hk) + B̃W̃ (k)

y(k) = C̃ς(k)
(21)

Then we have the following definitions

ζ(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ς(k)
ς(k − 1)

...
ς(k − d1)

...
ς(k − d2 − m)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Âi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i+d1−2︷ ︸︸ ︷
Ã 0 . . . 0 Ãd 0 . . . 0 0
I 0 . . . 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 I 0 . . . 0 0
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 0 . . . I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B̂ =

⎡
⎢⎢⎣

B̃
0

. . .
0

⎤
⎥⎥⎦


i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2(i+d1−2)︷ ︸︸ ︷
0 0 0 . . . 0 K CQ 0 . . . 0
K CQ 0 . . . 0 0 0 0 . . . 0
0 0 0 . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...
0 0 0 . . . 0 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Ĉ = [
C̃ 0 . . . 0

]
, e�(k) = qμ(
iζ(k)) − 
iζ(k)

for i = 1, 2, 3, . . . , d2 + m − d1 + 1, where Âi ∈
R2(d2+m+1)n×2(d2+m+1)n, B̂ ∈ R2(d2+m+1)n×2l and Ĉ ∈ Rp×2(d2+m+1)n.

Then system �d can be represented by the following
switched system

�σ :

⎧⎪⎨
⎪⎩

ζ(k + 1) = Âσ(k)ζ(k) + B̂e�(k)

y(k) = Ĉζ(k)

ζ(k) = 0 ∀k ≤ 0
(22)

where the state matrix Âσ(k) switches in the set
{Âd1 . . . Âd2+m}.
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Choose a common Lyapunov function for the switching
system

V (k) = ζ T(k)Pζ(k)

where P ∈ R2(d2+m+1)n×2(d2+m+1)n is a positive definite matrix,
and �V (k) is

�V (k) = V (k + 1) − V (k)

Before stating the main result, we have the following lemma.

Lemma 2: Given appropriately dimensioned matrices E, F ,
G, with E = ET. Then

E + FG + GTFT < 0

holds if for some scalar w > 0

E + w−1FFT + wGTG < 0

As a result, we can obtain a sufficient stability condition for
the switching system (22).

Theorem 2: For a given feedback gain matrix K , packet
losses variable δ(k) and time-varying delay between d1

and d2, system (22) is asymptotically stable if there exist
P = PT > 0 and w > 0 satisfying that

(1 + w)Âi
T
PÂi − P < 0 (23)

where i = 1, 2, 3, . . . , d2 + m − d1 + 1.

Proof: Define ψ = (1 + w−1), Î = [I 0 . . . 0]T, Di =
−[(1 + w)Âi

T
PÂi − P] and λmin(D) = min[λmin(Di)], where

λmin(Di) denotes the smallest eigenvalue of Di.
Under Lemma 2, it can be obtained that

�V (k) = ζ T(k + 1)Pζ(k + 1) − ζ T(k)Pζ(k)

= ζ T (k)(Âi
T
PÂi − P)ζ(k) + 2ζ T(k)Âi

T
PB̂e�(k)

+ eT
�(k)B̂TPB̂e�(k)

≤ ζ T(k)[(1 + w)Âi
T
PÂi − P]ζ(k)

+ (1 + w−1)eT
�(k)B̂TPB̂e�(k)

≤ −[λmin(Di)|ζ(k)|2 − ψ‖Î TB̂TPB̂Î‖�2μ2(k)]
≤ −[λmin(D)|ζ(k)|2 − ψ‖Î TB̂TPB̂Î‖�2μ2(k)] (24)

where Di is assumed to satisfy Di > 0 for i = 1, 2, 3,
. . . , d2 + m − d1 + 1.

The reason for neglecting saturation phenomena in
inequality (24) is that saturation is avoided by designing of
μ(k) using the ‘zooming’ method, which will be considered
in the following proof.

It is clear that �V (k) < 0 when Theorem 2 is satisfied,
and the state of

∑
d will ultimately go inside the region

H = {ζ(k) : |ζ(k)| ≤ 
�μ(k)} (25)

where 
 =
√

{[ψ‖Î B̂TPB̂Î‖]/{λmin(D)}].
992
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Next, we will use the ‘zooming’ method proposed in
[22, 23] to study the convergence from inside H to the
equilibrium point of the system.

The zooming-in stage of μ(k): Let u(k) = 0, μ(k) =
‖A‖k . Since the plant P is unstable, it is clear that ‖A‖ > 1.
Define

k0 = min

{
k ≥ 1 :

∥∥∥∥qμ

(

iζ(k)

μ(k)

)∥∥∥∥ ≤ M

√
λmin(P)

λmax(P)
− �

2

}

Initialise μ(k) to be

μ(k0) = ‖A‖k0 (26)

It follows that

∥∥∥∥
iζ(k)

μ(k0)

∥∥∥∥ ≤
∥∥∥∥qμ

(

iζ(k)

μ(k0)

)∥∥∥∥+ �

2
≤ M

√
λmin(P)

λmax(P)

Hence

‖
iζ(k)| ≤ Mμ(k0)

√
λmin(P)

λmax(P)

Let ‖
‖ = ‖
i‖, where i ∈ {1, 2, 3, . . . , d2 + m − d1 + 1},
we can obtain that

|ζ(k0)| ≤ M

‖
‖μ(k0)

√
λmin(P)

λmax(P)

Therefore ζ(k0) belongs to the region

R1 =
{
ζ(k) : ζ T(k)Pζ(k) ≤ M 2

‖
‖2
μ2(k0)λmin(P)

}
(27)

It is clear that ‖
iζ(k)‖ ≤ Mμ(k0) holds for all ζ(k) ∈ R1.
Define the scaling factor � as

� =
√

λmax(P)

λmin(P)

√

2 + ε‖
‖�M −1 (28)

where ε > 0 is a given parameter. Choose M and �
in (28) properly to make � < 1, then we have R1 ⊃ H ,
which means the state of the closed-loop system will never
leave R1.

The zooming-out stage of μ(k): Define

τ̂ = M 2λmin(P) − �2
2‖
‖2λmax(P)

‖
‖2λmin(D)�2ε
(29)

it is clear τ̂ > 0 as � < 1.
Let τ = �τ̂�, assume that

ζ T(k0 + τ)Pζ(k0 + τ) ≤ �2μ2(k0)(

2 + ε)λmax(P) (30)

If (30) is not true, we can have

ζ T(k0 + τ)Pζ(k0 + τ) > �2μ2(k0)(

2 + ε)λmax(P) (31)

Then we have |ζ(k0 + τ)|2 > �2μ2(k0)(

2 + ε) for all k ∈

[k0, k0 + τ ].
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The following inequality can be obtained from (27)
and (31)

ζ T(k0 + τ)Pz(k0 + τ) − ζ T(k0)Pζ(k0)

≥ �2μ2(k0)(

2 + ε)λmax(P) − M 2

‖
‖2
μ2(k0)λmin(P)

= λmax(P)
2�2μ2(k0) − M 2

‖
‖2
μ2(k0)λmin(P) (32)

Nevertheless, based on (24) and (30) and � < 1, it is clear
that

�V (k0 + τ − 1)

= ζ T(k0 + τ)Pζ(k0 + τ) − ζ T(k0 + τ − 1)Pζ(k0 + τ − 1)

≤ −λmin(D)|ζ(k0 + τ − 1)|2 + λmin(D)
2�2μ2(k0)

< −λmin(D)�2μ2(k0)ε

Similarly, it can be obtained that

�V (k0 + τ − j)

= ζ T(k0 + τ − j + 1)Pζ(k0 + τ − j + 1)

− ζ T(k0 + τ − j)Pζ(k0 + τ − j)

≤ −λmin(D)|ζ(k0 + τ − j)|2 + λmin(D)
2�2μ2(k0)

< −λmin(D)�2μ2(k0)ε

where j = {1, 2, 3, . . . , τ }.
Then we have

ζ T(k0 + τ)Pζ(k0 + τ) − ζ T(k0)Pζ(k0)

< −λmin(D)�2μ2(k0)ετ

≤ −λmin(D)�2μ2(k0)ετ̂

= λmax(P)
2�2μ2(k0) − M 2

‖
‖2
μ2(k0)λmin(P) (33)

As (32) and (33) contradict with each other, the validity of
(30) has been implied.

Based on (30) and � < 1, it follows that

ζ T(k0 + τ)Pζ(k0 + τ) ≤ �2μ2(k0)(

2 + ε)λmax(P)

< (�μ(k0))
2 M 2

‖
‖2
λmin(P)

Thus, ζ(k0 + τ) belongs to

R2 =
{
ζ(k) : ζ T(k)Pζ(k) ≤ (�μ(k0))

2 M 2

‖
‖2
λmin(P)

}

Compared with region R1, it is clear that the radius of region
R2 is smaller, which means the state of the closed-loop
system converges after τ steps from k0.

Let

μ(k) = �� k−k0
τ

�μ(k0) (34)

where k ≥ k0.
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For k0 + τ ≤ k ≤ k0 + 2τ , a similar result can be
obtained as

ζ T(k0 + 2τ)Pζ(k0 + 2τ) ≤ (
�2μ(k0)

)2 M 2

‖
‖2
λmin(P)

Moreover, for k0 + (i − 1)τ ≤ k ≤ k0 + iτ , it can be
obtained that

ζ T(k0 + iτ)Pζ(k0 + iτ) ≤ (
�iμ(k0)

)2 M 2

‖
‖2
λmin(P)

where the scaling factor μ(k) can be narrowed every τ steps.
That is, ζ(k0 + iτ) belongs to

Ri+1 =
{
ζ(k) : ζ T(k)Pζ(k) ≤ (

�iμ(k0)
)2 M 2

‖
‖2
λmin(P)

}

It is clear that μ(k) → 0 when k → ∞, and
limk→∞ |ζ(k)| = 0, then the proof of Theorem 2 is com-
pleted. �

Remark 5: The zooming-in and zooming-out methods are
important to guarantee asymptotical stability of the closed-
loop system. As is depicted in (25), when (23) is satisfied,
the state outside H will ultimately converge to H . However,
as asymptotically stability is considered in our paper, con-
vergence from inside H to the equilibrium point should be
further considered. To solve this problem, the zooming-in
method is firstly utilised to build region R1 in (27) that sat-
isfies R1 ⊃ H , which means the state inside H will never
leave R1. Then the zooming-out method is used to decrease
radius of Rk (k = 1, 2, . . .) gradually. It is clear that the state
inside Rk(k = 1, 2, . . .) goes to the equilibrium point when
radius of the region Rk(k → ∞) goes to 0, and asymptotic
stability of the system is proved.

5 An illustrative example

In this section, an illustrative example is given to illustrate
the advantages of the proposed method.

Consider the plant described by

A =
[

1.01 0
0 0.5

]
, B =

[−1
2

]
, C = [−1.9 4

]
P is unstable as one of its eigenvalues is outside the unit
circle, and it is stabilisable as rank[B AB] = 2.

By using Theorem 1, we can obtain the optimal dynamic
quantiser Q∗ given as

A = A, B = −B, C = [−0.1938 0.202
]

and parameters of quantiser qμ are given as M = 8 × 102

and � = 0.05.
The system is initialised as x(0) = [0.3 0.5]T, ξ(0) =

[0 0]T, ε = 1 × 104, and � = 0.8787 < 1.
In our example we let K = [0.1 − 0.02], d1 = 2, d2 = 5

and m = 3. There exist positive scalar w = 0.1 and positive
definite matrix P ∈ R36×36 satisfying (23), then the system
�d is asymptotically stable.

The trajectories of the state x(k) under five different meth-
ods are given in Figs. 3 and 4, where xi(k) is the ith
component of x(k). Time-varying delay d(k) and packet loss
variable δ(k) are as shown in Figs. 5 and 6, respectively.
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Fig. 3 Trajectories of the state x1(k)

Fig. 4 Trajectories of the state x2(k)
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Fig. 5 Time delay of the system

As shown in Figs. 3 and 4, x(k) of the proposed method
converges to zero, which means system �d is asymptotically
stable. However, for method in [15] and that using static
uniform quantiser, x(k) does not converge to zero, that is,
the system is not asymptotically stable. Although x(k) of
994
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Fig. 6 Packet loss variable δ(k)

Fig. 7 Trajectories of output error under four different methods

the proposed method and of the method in [22] are both
converge to zero, the proposed method has a better control
performance than those in [22].

A comparison result with regard to output error is given
in Fig. 7 to show advantages of the proposed method, where
trajectories of the output error y(k) − y∗(k) under four dif-
ferent methods are presented. It is clear that the proposed
quantiser has the smallest output error among these four
quantisers.

6 Conclusions

The stability problem of a linear dynamic quantised system
subject to time-varying delay and packet losses in the feed-
back channel has been discussed in this paper. Parameters
of the original dynamic quantiser are re-designed by com-
bining scaling factor and taking time-varying delays as well
as packet losses into consideration to make it optimal for
our system. Using the Lyapunov function method, a suf-
ficient condition for asymptotic stability of the system has
been obtained in terms of matrix inequalities, and the ‘zoom-
ing’ method is used in the proof to eventually eliminate the
steady-state error. The effectiveness of the proposed method
has been illustrated through the simulation studies.
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9 Appendix

Proof of Lemma 1: Since the time-varying delay satisfies (2)
and the packet loss satisfies (3) and (4), it is clear that the
latest input of P which may be available at the time instant
k is v(k − d1), if v(k − d1) is not lost and suffers the short-
est time delay d1. Meanwhile, the oldest input which may
available at the time instant k is v(k − (d2 + m)), if it suf-
fers the longest time delay d2 and the former m successive
control updates are lost.

Therefore v(k − i) (i ∈ {d1, d1 + 1, . . . , d2 + m}) are the
only inputs of P at the time instant k . Since more than one
control update may be available at k , it is necessary for us
to make sure which control update should be implemented.
Here the newest control input is chosen to be implemented
at each instant for P, as is shown in (11).

In this paper we use δ(k − i) + sgn[max{0, d(k − i) − i}]
to denote whether v(k − i) is available at the time instant k .

If v(k − i) is lost, we can obtain from (3) that δ(k −
i) = 1 and if the time delay is more than i, then
sgn[max{0, d(k − i) − i}] = 1. Therefore if and only if
v(k − i) is not lost and the delay is less than i that we
can obtain δ(k − i) + sgn[max{0, d(k − i) − i}] equals to 0,
which means it is available at the time instant k . As a
result, we can obtain that v(k − hk) is the newest input of
P, where hk = min{i + [δ(k − i) + sgn[max{0, d(k − i) −
i}]](d2 + m)} (i ∈ {d1, d1 + 1, . . . , d2 + m}).

Meanwhile, it should be noted that k − hk ≤ 0 when no
control input arrives at the plant P, during which period
only v∗(k) = v(0) is available. Therefore we let v∗(k) =
v
(

max{0, k − hk}
)

to make v∗(k) = v(0) when no control
input arrives at P, this completes the proof. �
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