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Stability and design of a dynamic quantized predictive control system with time-varying delay and packet loss are studied. For
the system with time-varying delay and packet loss in the forward channel, a dynamic quantizer that can minimize the quantized
output error is designed and a networked quantized predictive control (NQPC) strategy is proposed to compensate for the delay and
packet loss. Stability of the NQPC system is then analyzed and a sufficient stability condition is derived and presented in the form
of matrix inequality. Finally, both simulation and experimental results are given to demonstrate the effectiveness of the proposed
approach.

1. Introduction

In past decades, networked control systems (NCSs) have
been widely studied, whose data are transmitted by networks
with finite capacity. Different from traditional control sys-
tems, there exist many inevitable problems such as network
induced delays and packet losses in networked control sys-
tems. To overcome such difficulties, some effective methods
have been proposed, among which a representative one is the
networked predictive control (NPC) method [1–5].

For example, predictive control system design with time-
varying delay in the feedback channel was considered in [1],
where sufficient conditions for stability of the closed-loop
NCS were given. Meanwhile, NPC systems with delays both
in forward and feedback channel were investigated in [2, 3].
The implementation of NPC scheme was addressed in [4],
where both simulation and practical implementation were
carried out. In [5] an event-driven predictive controller was
designed and a practical example was presented to confirm
the effectiveness of the NPC method.

For control systems that use networks for communica-
tion, data quantization is an important problemwhich should
be taken into consideration. Strictly speaking, all networked

control systems are quantized control systems, because data
quantization is inevitable before transmission.

There are generally two representative quantizers for
quantization: the static quantizer and the dynamic quantizer.
In [6–8], a static logarithmic quantizer was studied, where
stabilization of discrete-time systems was investigated. In
[9, 10], stabilization of systems using finite data rates was
analyzed, and it was proved that the finite horizon coder is
actually a quantizer. In [11, 12], analysis of systems with a
quantized feedbackwas considered by investigating quantizer
complexity versus system performance. In [13, 14], the coars-
est logarithmic quantizer design and stabilization of quan-
tized system with packet loss were analyzed. Compared with
the static quantizer, dynamic quantizer has been an important
topic in last several years. In [15, 16], a novel dynamic
quantizer with a scaling factor was proposed, and asymptotic
stability was studied using the “zooming” approach. In [17],
an optimal dynamic quantizer was investigated, which can
minimize the output error between the quantized system and
the unquantized system.

For the studies mentioned above, quantization has not
been considered for NPC systems that is able to compen-
sate time-varying delay and packet loss. Meanwhile, active
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Figure 1: Dynamic quantized predictive control system.

compensation of networked delay and packet loss has not
been studied for quantized systems before. For these reasons,
in this paper, a synthesis method of NQPC system is given.
Both time-varying delay and packet loss are compensated
using the predictive control method. An improved dynamic
quantizer that canminimize the quantized error in the input-
output relation is designed for the NQPC system.The closed-
loop system is then lifted to a switched system [18–21] and a
sufficient condition for stability is given.

The whole paper is organized as follows. Section 2
describes the NQPC system with time-varying delay and
packet loss. Section 3 studies the predictive compensation
strategy. Section 4 designs a dynamic quantizer that can
minimize themaximum output error of the system. Section 5
analyzes stability of the NQPC system. Section 6 gives both
simulation and experimental results to indicate that our
control strategy is effective and Section 7 concludes the paper.

2. NQPC System Description

The networked quantized predictive control (NQPC) system
with time-varying delay in the forward channel as shown in
Figure 1 is studied in this paper. The key idea of NQPC is
that all the possible future control inputs are quantized and
packed into a single packet before being transmitted through
the network. Then the compensator chooses an appropriate
quantized control input from the received packet and applies
it to the plant.

The discrete-time system studied in this paper is
described by

𝑃 : {
𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵V∗ (𝑘)
𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(1)

where 𝑥 ∈ R𝑛, V∗ ∈ R𝑙, and 𝑦 ∈ R𝑝 are state vector, control
input, and system output, respectively. 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑙,
and𝐶 ∈ R𝑝×𝑛 are systemmatrices.The initial state is 𝑥

0
∈ R𝑛.

The dynamic quantizer 𝑄∗ (𝑖 = 0, 1, 2, . . . , 𝑁) is given by

𝑄
∗

:

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝜉 (𝑘 + 1)

= A𝜉 (𝑘) +B (V (𝑘) − 𝑢 (𝑘))
𝜉 (𝑘 + 2 | 𝑘)

= A𝜉 (𝑘 + 1 | 𝑘)

+B (V (𝑘 + 1 | 𝑘) − 𝑢 (𝑘 + 1 | 𝑘))
.
.
.

𝜉 (𝑘 + 𝑁 + 1 | 𝑘)

= A𝜉 (𝑘 + 𝑁 | 𝑘)

+B (V (𝑘 + 𝑁 | 𝑘) − 𝑢 (𝑘 + 𝑁 | 𝑘))

V (𝑘) = 𝑞
𝜇
(C𝜉 (𝑘) + 𝑢 (𝑘))

V (𝑘 + 1 | 𝑘) = 𝑞
𝜇
(C𝜉 (𝑘 + 1 | 𝑘) + 𝑢 (𝑘 + 1 | 𝑘))

.

.

.

V (𝑘 + 𝑁 | 𝑘)

= 𝑞
𝜇
(C𝜉 (𝑘 + 𝑁 | 𝑘) + 𝑢 (𝑘 + 𝑁 | 𝑘)) ,

(2)

where 𝜉(𝑘 + 1) = 𝜉(𝑘 + 1 | 𝑘), 𝜉 ∈ R𝑛, 𝑢∗ ∈ R𝑙, and V ∈ V𝑙
are the state, input, and output of𝑄∗

𝑖
(V ⊂ R are quantization

sets of 𝑄∗
𝑖
) and A, B, and C are system matrices that will

be designed in Section 4. Set the initial states 𝜉(0) = 0 and
V(𝑘) = 0 when 𝑢(𝑘) = 0.

The static part 𝑞
𝜇
of (2) can be obtained as [15]

𝑞
𝜇
(𝑥) =

{{{{{{{

{{{{{{{

{

𝜇 (𝑘)𝑀, if 𝑥

𝜇 (𝑘)
> 𝑀 −

Δ

2

−𝜇 (𝑘)𝑀, if 𝑥

𝜇 (𝑘)
≤ −𝑀 +

Δ

2

⌊
𝑥

Δ𝜇 (𝑘)
+
1

2
⌋Δ𝜇 (𝑘) , if |𝑥|

𝜇 (𝑘)
≤ 𝑀 −

Δ

2
,

(3)

where Δ is its sensitivity and 𝑀 is the saturation value. We
use ⌊𝑎⌋ to represent the biggest integer that satisfies ⌊𝑎⌋ ≤ 𝑎

in our paper. 𝜇(𝑘) is the scaling factor that is monotonically
nonincreasing, which will be considered later in our paper.

Moreover, the following assumptions are made in this
paper.

Assumption 1. Consider 𝑙 = 𝑝 (the dimensions of V and 𝑦 are
the same) and the matrix 𝐶𝐵 is nonsingular.

Assumption 2. (𝐴, 𝐵) is controllable and (𝐴, 𝐶) is observable.

Assumption 3. The delay in the forward channel satisfies 0 ≤
𝑑(𝑘) ≤ 𝑑

𝑚
.

Assumption 4. The maximum consecutive number of packet
loss in the forward channel is 𝑝

𝑚
.

3. The Predictive Compensation Strategy

To compensate time-varying delay and packet loss in our sys-
tem, we introduce the predictive compensate controlstrategy
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[1, 2] in our paper, which is composed of an observer, a pre-
diction generator, and a delay compensator. The idea of our
NQPCmethod is that all the possible future control inputs are
quantized and packed into a packet before transmission, and
then the compensator chooses an appropriate control input
from the received packet and applies it to the plant.

Firstly a state observer can be given as

𝑥 (𝑘 + 1 | 𝑘) = 𝐴𝑥 (𝑘 | 𝑘 − 1) + 𝐵𝑢 (𝑘)

+ 𝐿 [𝑦 (𝑘) − 𝐶𝑥 (𝑘 | 𝑘 − 1)] ,

(4)

where 𝑥(𝑘 + 1 | 𝑘) ∈ R𝑛 is the one step state prediction, 𝑢(𝑘)
is the input, and 𝐿 is the system matrix.

For the quantized predictive control system, it is clear
that the length of predictive sequence must be equal to or
bigger than upper bound of the total network induced delay
and packet loss. Therefore, we have integer𝑁 satisfying𝑁 ≥

𝑑
𝑚
+ 𝑝
𝑚
which means the prediction is able to compensate

for delay and pack loss in the forward channel and 𝑁 is the
length of the predictive sequence.

Based on (4) and the output data up to 𝑘, state predictive
sequence from instant 𝑘 + 1 to 𝑘 + 𝑁 can be constructed as

𝑥 (𝑘 + 1 | 𝑘) = 𝐴𝑥 (𝑘 | 𝑘 − 1) + 𝐵𝑢 (𝑘)

+ 𝐿 [𝑦 (𝑘) − 𝐶𝑥 (𝑘 | 𝑘 − 1)]

𝑥 (𝑘 + 2 | 𝑘) = 𝐴𝑥 (𝑘 + 1 | 𝑘) + 𝐵𝑢 (𝑘 + 1 | 𝑘)

𝑥 (𝑘 + 3 | 𝑘) = 𝐴𝑥 (𝑘 + 2 | 𝑘) + 𝐵𝑢 (𝑘 + 2 | 𝑘)

.

.

.

𝑥 (𝑘 + 𝑁 | 𝑘) = 𝐴𝑥 (𝑘 + 𝑁 − 1 | 𝑘) + 𝐵𝑢 (𝑘 + 𝑁 − 1 | 𝑘)

(5)

with

𝑢 (𝑘 + 𝑖 | 𝑘) = 𝐾𝑥 (𝑘 + 𝑖 | 𝑘) , (6)

where, 𝑖 = {1, 2, . . . , 𝑁}, 𝐾 ∈ R𝑙×𝑛 is the state feedback gain,
and the way we choose 𝐾 is the same as that of traditional
control systems.

This results in

𝑥 (𝑘 + 𝑖 | 𝑘)

= (𝐴 + 𝐵𝐾)
𝑖−1

𝑥 (𝑘 + 1 | 𝑘)

= (𝐴 + 𝐵𝐾)
𝑖−1

[(𝐴 + 𝐵𝐾 − 𝐿𝐶) 𝑥 (𝑘 | 𝑘 − 1) + 𝐿𝐶𝑥 (𝑘)] ,

(7)

where 𝑖 = {1, 2, . . . , 𝑁}.
In this paper, output of the control prediction generator

at instant 𝑘 can be given as

[𝑢 (𝑘)
𝑇

𝑢 (𝑘 + 1 | 𝑘)
𝑇

𝑢 (𝑘 + 2 | 𝑘)
𝑇

⋅ ⋅ ⋅ 𝑢 (𝑘 + 𝑁 | 𝑘)
𝑇

]
𝑇

. (8)

Remark 5. It is clear in (8) that output sequence length of the
control prediction generator is 𝑁 + 1, which means that the
sequence is composed of two parts: the real-time control part
𝑢(𝑘) and the predictive control part [𝑢(𝑘 + 1 | 𝑘)

𝑇

𝑢(𝑘 +

2 | 𝑘)
𝑇

⋅ ⋅ ⋅ 𝑢(𝑘 + 𝑁 | 𝑘)
𝑇

]
𝑇. When a control output is
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Figure 2: Unquantized predictive control system.

transmitted without suffering delay or packet loss, the real-
time control part 𝑢(𝑘)will be used for control.When delay or
packet loss occurs during transmission, the predictive control
part will be used for control.

Output of the dynamic quantizer 𝑄∗ at instant 𝑘 is a
sequence

V (𝑘) = 𝑞
𝜇
(C𝜉 (𝑘) + 𝑢 (𝑘))

V (𝑘 + 1 | 𝑘) = 𝑞
𝜇
(C𝜉 (𝑘 + 1 | 𝑘) + 𝑢 (𝑘 + 1 | 𝑘))

.

.

.

V (𝑘 + 𝑁 | 𝑘) = 𝑞
𝜇
(C𝜉 (𝑘 + 𝑁 | 𝑘) + 𝑢 (𝑘 + 𝑁 | 𝑘)) ,

(9)

where V(𝑘+ 𝑖 | 𝑘) (𝑖 = {0, 1, 2, . . . , 𝑁}) is the quantized output
signal obtained by quantizer 𝑄∗.

In this paper both packet loss and time-varying delay are
considered as delay. Define a bounded random scalar 0 ≤

𝜏(𝑘) ≤ 𝑑
𝑚
+𝑝
𝑚
. As is depicted in Figure 1, since the quantizer

output V(𝑘) is transmitted through the network with delay
and packet loss, let V(𝑘 − 𝜏(𝑘)) denote the delayed quantizer
output received by the compensator at instant 𝑘.

For the system considered in this paper, since more than
one predictive sequence may arrive at the compensator side
at the same time, assume that only the newest predictive
sequence is used at each instant.

Then output of the delay compensator at instant 𝑘 can be
obtained as

V∗ (𝑘) = V (𝑘 | 𝑘 − 𝜏 (𝑘))

= 𝑞
𝜇
[C𝜉 (𝑘 | 𝑘 − 𝜏 (𝑘)) + 𝑢 (𝑘 | 𝑘 − 𝜏 (𝑘))] .

(10)

4. Design of a Dynamic Quantizer

In this section, parameters of the dynamic quantizer (2) are
designed.

The system in Figure 2 is an unquantized nominal system,
where the initial state, plant, controller, predictive strategy,
delay, and packet losses process of that system are same as
those in the quantized system in Figure 1.
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Definition 6. Define the maximum output error between the
two systems as

Er (𝑄∗) = max
𝑘∈Z
+

𝑦 (𝑘, 𝑥0) − 𝑦
∗

(𝑘, 𝑥
0
)
 , (11)

where for instance 𝑘, 𝑦(𝑘) is output of the NQPC system in
Figure 1 and𝑦∗(𝑘) is output of the nominal system in Figure 2
and the initial state is 𝑥(0) = 𝑥

0
.

Remark 7. Er(𝑄∗) in (11) represent the output difference
between the NQPC system and its nominal system. The
upper bound of Er(𝑄∗) is minimized through parameters
redesigning of (2), which is an optimal approximation of the
nominal system in the sense of input-output relation.

Through parameters redesigning, a dynamic quantizer
for our NQPC system can be given according to the following
theorem.

Theorem 8. The dynamic quantizer of the NQPC system that
is able to minimize the quantized error can be given as

𝑄
∗

:

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝜉 (𝑘 + 1) = 𝐴𝜉 (𝑘) 𝐵 (V (𝑘) − 𝑢 (𝑘))
𝜉 (𝑘 + 2 | 𝑘)

= 𝐴𝜉 (𝑘 + 1 | 𝑘)

+𝐵 (V (𝑘 + 1 | 𝑘) − 𝑢 (𝑘 + 1 | 𝑘))
.
.
.

𝜉 (𝑘 + 𝑁 + 1 | 𝑘)

= 𝐴𝜉 (𝑘 + 𝑁 | 𝑘)

+𝐵 (V (𝑘 + 𝑁 | 𝑘) − 𝑢 (𝑘 + 𝑁 | 𝑘))

V (𝑘) = 𝑞
𝜇
(𝐶
𝑄
𝜉 (𝑘) + 𝑢 (𝑘))

V (𝑘 + 1 | 𝑘) = 𝑞
𝜇
(𝐶
𝑄
𝜉 (𝑘 + 1 | 𝑘) + 𝑢 (𝑘 + 1 | 𝑘))

.

.

.

V (𝑘 + 𝑁 | 𝑘)

= 𝑞
𝜇
(𝐶
𝑄
𝜉 (𝑘 + 𝑁 | 𝑘) + 𝑢 (𝑘 + 𝑁 | 𝑘))

(12)

and the upper bound of the maximum output error can be
minimized by

Er (𝑄∗) ≤ ‖𝐶𝐵‖
Δ𝜇 (0)

2
, (13)

where 𝐶
𝑄
= −(𝐶𝐵)

−1

𝐶𝐴.

Proof. For the NQPC system described in previous section,
from (1), (2), (6), and (9) we have the following equations:

𝑢 (𝑘) = 𝑢 (𝑘 | 𝑘 − 𝜏 (𝑘))

= 𝐾 (𝐴 + 𝐵𝐾)
𝜏(𝑘)−1

[(𝐴 + 𝐵𝐾 − 𝐿𝐶) 𝑥

× (𝑘 − 𝜏 (𝑘) | 𝑘 − 𝜏 (𝑘) − 1)

+𝐿𝐶𝑥 (𝑘 − 𝜏 (𝑘))] ,

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵V∗ (𝑘)

= 𝐴𝑥 (𝑘) + 𝐵C𝜉 (𝑘 | 𝑘 − 𝜏 (𝑘)) + 𝐵𝜔 (𝑘)

+ 𝐵𝑢 (𝑘 | 𝑘 − 𝜏 (𝑘))

= 𝐴𝑥 (𝑘) + 𝐵C𝜉 (𝑘 | 𝑘 − 𝜏 (𝑘)) + 𝐵𝜔 (𝑘)

+ 𝐵𝐾 (𝐴 + 𝐵𝐾)
𝜏(𝑘)−1

× [(𝐴 + 𝐵𝐾 − 𝐿𝐶) 𝑥 (𝑘 − 𝜏 (𝑘) | 𝑘 − 𝜏 (𝑘) − 1)

+ 𝐿𝐶𝑥 (𝑘 − 𝜏 (𝑘))] ,

𝑥 (𝑘 + 1 | 𝑘) = 𝐴𝑥 (𝑘 | 𝑘 − 1) + 𝐵𝑢 (𝑘)

+ 𝐿 [𝑦 (𝑘) − 𝐶𝑥 (𝑘 | 𝑘 − 1)]

= (𝐴 + 𝐵𝐾 − 𝐿𝐶) 𝑥 (𝑘 | 𝑘 − 1) + 𝐿𝐶𝑥 (𝑘) ,

𝜉 (𝑘 + 1) = A𝜉 (𝑘) +B (V (𝑘) − 𝑢 (𝑘))

= (A +BC) 𝜉 (𝑘) +B𝜔 (𝑘)

𝜉 (𝑘 + 1 | 𝑘) = (A +BC) 𝜉 (𝑘) +B𝜔 (𝑘)

𝜉 (𝑘 + 1 | 𝑘 − 1) = (A +BC) 𝜉 (𝑘 | 𝑘 − 1) +B𝜔 (𝑘) ,

.

.

.

𝜉 (𝑘 + 1 | 𝑘 − 𝑁 + 1)

= (A +BC) 𝜉 (𝑘 | 𝑘 − 𝑁 + 1) +B𝜔 (𝑘) ,

(14)

where 𝜔(𝑘) = 𝑞
𝜇
(C𝜉(𝑘 | ⋅) + 𝑢(𝑘)) − (C𝜉(𝑘 | ⋅) + 𝑢(𝑘)).

Letting 𝑆 = (𝐴 + 𝐵𝐾),

𝑧 (𝑘)

= [ 𝑥 (𝑘)
𝑇

𝑥 (𝑘 − 1)𝑇 ⋅ ⋅ ⋅ 𝑥 (𝑘 − 𝑁)
𝑇

𝑥 (𝑘 | 𝑘 − 1)𝑇 𝑥 (𝑘 − 1 | 𝑘 − 2)𝑇 ⋅ ⋅ ⋅ 𝑥 (𝑘 − 𝑁 | 𝑘 − 𝑁 − 1)𝑇

𝑢 (𝑘 − 1)𝑇 𝑢 (𝑘 − 2)𝑇 ⋅ ⋅ ⋅ 𝑢 (𝑘 − 𝑁)
𝑇

𝜉 (𝑘)
𝑇

𝜉 (𝑘 − 1)𝑇 ⋅ ⋅ ⋅ 𝜉 (𝑘 − 𝑁)
𝑇

𝜉 (𝑘 | 𝑘 − 1)𝑇

𝜉 (𝑘 − 1 | 𝑘 − 2)𝑇 ⋅ ⋅ ⋅ 𝜉 (𝑘 − 𝑁 + 1 | 𝑘 − 𝑁)𝑇 𝜉 (𝑘 | 𝑘 − 2)𝑇 𝜉 (𝑘 − 1 | 𝑘 − 3)𝑇 ⋅ ⋅ ⋅ 𝜉 (𝑘 − 𝑁 + 2 | 𝑘 − 𝑁)𝑇

⋅ ⋅ ⋅ 𝜉 (𝑘 | 𝑘 − 𝑁)
𝑇

]
𝑇

,

𝐵 = [𝐵
𝑇 0𝑇
𝑙×[𝑛(2𝑁+1)+𝑙𝑁] B

𝑇 0𝑇
𝑙×𝑛𝑁

B𝑇 0𝑇
𝑙×𝑛(𝑁−1) ⋅ ⋅ ⋅ B𝑇]

𝑇

,

𝐶 = [𝐶 0
𝑝×[𝑛(3𝑁+2+𝑁(𝑁+1)/2)+𝑙𝑁]] ,
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Ξ
𝜎(𝑘)

=

[
[
[
[
[
[
[
[
[
[
[

[

∏

11
∏

12
0 ∏

14

∏

21
∏

22
0 0

∏

31
∏

32
∏

33
0

0 0 0 ∏

44

]
]
]
]
]
]
]
]
]
]
]

]

,

∏

11
= [

[

𝐴 0
𝑛×𝑛(𝜏(𝑘)−1) 𝐵𝐾𝑆

𝜏(𝑘)−1
𝐿𝐶 0

𝑛×𝑛(𝑁−𝜏(𝑘))

𝐼
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛

]

]

,

∏

12
= [

[

0
𝑛×𝑛𝜏(𝑘)

𝐵𝐾𝑆
𝜏(𝑘)−1

(𝐴 + 𝐵𝐾 − 𝐿𝐶) 0
𝑛×𝑛(𝑁−𝜏(𝑘))

0
𝑛𝑁×𝑛(𝑁+1)

]

]

,

∏

14
= [

[

0
𝑛×𝑛[(𝜏(𝑘)+1)𝑁−𝜏(𝑘)(𝜏(𝑘)−1)/2] BC 0

𝑛×𝑛(𝑁(𝑁+1)/2−𝜏(𝑘)𝑁+𝜏(𝑘)(𝜏(𝑘)−1)/2−1)

0
𝑛𝑁×𝑛(𝑁(𝑁+1)/2)

]

]

,

∏

21
= [

𝐿𝐶 0
𝑛×𝑛𝑁

0
𝑛𝑁×𝑛(𝑁+1)

] ,

∏

22
= [

𝐴 − 𝐿𝐶 0
𝑛×𝑛(𝜏(𝑘)−1) 𝐵𝐾𝑆

𝜏(𝑘)−1
(𝐴 − 𝐿𝐶) 0

𝑛×𝑛(𝑁−𝜏(𝑘))

𝐼
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛

] ,

∏

31
= [

0
𝑙×𝑛𝜏(𝑘)

𝐾𝑆
𝜏(𝑘)−1

𝐿𝐶 0
𝑙×𝑛(𝑁−𝜏(𝑘))

0
𝑙(𝑁−1)×𝑛(𝑁+1)

] ,

∏

32
= [

0
𝑙×𝑛𝜏(𝑘)

𝐾𝑆
𝜏(𝑘)−1

(𝐴 + 𝐵𝐾 − 𝐿𝐶) 0
𝑙×𝑛(𝑁−𝜏(𝑘))

0
𝑙(𝑁−1)×𝑛(𝑁+1)

] ,

∏

33
= [

0
𝑙×𝑙𝑁

𝐼
𝑙(𝑁−1)×𝑙(𝑁−1) 0𝑙(𝑁−1)×𝑙

] ,

∏

44

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

A +BC

𝐼
𝑛𝑁×𝑛𝑁

A +BC

0
𝑛(𝑁−1)×𝑛

0
𝑛×𝑛

0
𝑛(𝑁−2)×𝑛

.

.

.

0
𝑛×𝑛

0
𝑛×𝑛

0
𝑛×𝑛

𝑁(𝑁 + 3)

2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

0
𝑛×𝑛

⋅ ⋅ ⋅ 0
𝑛×𝑛

0
𝑛𝑁×𝑛

⋅ ⋅ ⋅ 0
𝑛𝑁×𝑛

0
𝑛×𝑛

⋅ ⋅ ⋅ 0
𝑛×𝑛

𝐼
𝑛(𝑁−1)×𝑛(𝑁−1)

0
𝑛(𝑁−1)×𝑛

⋅ ⋅ ⋅ 0
𝑛(𝑁−1)×𝑛

A +BC 0
𝑛×𝑛

⋅ ⋅ ⋅ 0
𝑛×𝑛

0
𝑛(𝑁−2)×𝑛

𝐼
𝑛(𝑁−2)×𝑛(𝑁−2)

0
𝑛(𝑁−2)×𝑛

⋅ ⋅ ⋅ 0
𝑛(𝑁−2)×𝑛

d

⋅ ⋅ ⋅ 0
𝑛×𝑛

A +BC 0
𝑛×𝑛𝑁

⋅ ⋅ ⋅ 0
𝑛×𝑛

0
𝑛×𝑛

𝐼
𝑛𝑁×𝑛𝑁

⋅ ⋅ ⋅ 0
𝑛×𝑛

0
𝑛×𝑛

A +BC

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(15)
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Then the NQPC system can be written as the following
switched system:

𝑧 (𝑘 + 1) = Ξ
𝜎(𝑘)

𝑧 (𝑘) + 𝐵𝜔 (𝑘)

𝑦 (𝑘) = 𝐶𝑧 (𝑘) ,

(16)

where the state matrix Ξ
𝜎(𝑘)

switches in the set of possible
matrices {Ξ

0
⋅ ⋅ ⋅ Ξ
𝑁
} according to the parameter 𝜎(𝑘) called

the switching function, which takes value from the finite
index set F = {0, 1, 2, . . . , 𝑁}.

Moreover, the nominal system in Figure 2 is given as

𝜉 (𝑘 + 1) = Φ
𝜎(𝑘)

𝜉 (𝑘)

𝑦
∗

(𝑘) = 𝐶𝜉 (𝑘) ,

(17)

where
𝜉
𝑘
= [ 𝑥 (𝑘)

𝑇

𝑥 (𝑘 − 1)
𝑇

⋅ ⋅ ⋅ 𝑥 (𝑘 − 𝑁)
𝑇

𝑥 (𝑘 | 𝑘 − 1)
𝑇

𝑥 (𝑘 − 1 | 𝑘 − 2)
𝑇

⋅ ⋅ ⋅ 𝑥 (𝑘 − 𝑁 | 𝑘 − 𝑁 − 1)
𝑇

𝑢 (𝑘 − 1)
𝑇

𝑢 (𝑘 − 2)
𝑇

⋅ ⋅ ⋅ 𝑢 (𝑘 − 𝑁)
𝑇

]
𝑇

,

Φ
𝜎(𝑘)

=

[
[
[
[
[

[

∏

11

∏

12

0

∏

21

∏

22

0

∏

31

∏

32

∏

33

]
]
]
]
]

]

, 𝐶 = [𝐶 0
𝑝×𝑛(3𝑁+1)

] .

(18)

Therefore, difference between 𝑦∗(𝑆, 𝑥
0
) and 𝑦(𝑆, 𝑥

0
) (𝑆 ∈

Z
+
) is

𝑦
∗

(𝑆, 𝑥
0
) − 𝑦 (𝑆, 𝑥

0
)

= 𝐶Φ
𝑆

𝜎(𝑘)
[

𝑥
0

0
𝑛(4𝑁+2)×1

] − 𝐶Ξ
𝑆

𝜎(𝑘)
[

𝑥
0

0
𝑛(3𝑁+1)×1

]

− 𝐶

𝑆−1

∑

𝑙=0

Ξ
(𝑆−1)−𝑙

𝜎(𝑘)
𝐵𝜔 (𝑙)

= −𝐶

𝑆−1

∑

𝑙=0

Ξ
(𝑆−1)−𝑙

𝜎(𝑘)
𝐵𝜔 (𝑙) .

(19)

It is clear that

𝑦
∗

(𝑆, 𝑥
0
) − 𝑦 (𝑆, 𝑥

0
)
 ≤



𝑆−1

∑

𝑙=0

𝐶Ξ
(𝑆−1)−𝑙

𝜎(𝑘)
𝐵



Δ𝜇 (0)

2

=



𝐶𝐵 +

𝑆−1

∑

𝑙=1

𝐶Ξ
(𝑆−1)−𝑙

𝜎(𝑘)
𝐵



Δ𝜇 (0)

2
.

(20)

Moreover, whenA = 𝐴,B = 𝐵, andC = 𝐶
𝑄
, we can get

𝐶Ξ
(𝑆−1)−𝑙

𝜎(𝑘)
𝐵 = 0 (𝑙 = 1, 2, . . . ,∞), which means that the latter

part of (20) is minimized, and therefore it can be given that

Er (𝑄∗) ≤ ‖𝐶𝐵‖
Δ𝜇 (0)

2
. (21)

As a result, upper bound of the maximum output error
Er(𝑄∗) between the NQPC system and its nominal system is
minimized, the dynamic quantizer is given in (12), and the
smallest upper bound of Er(𝑄∗) is obtained in (21).

Remark 9. In this paper the dynamic quantizer (12) is
different from that in [17]. Since the scaling quantizer 𝑞

𝜇
(3) is

used for dynamic quantization instead of traditionally static
quantizer in [17], improved dynamic quantizers are obtained
for our system, which can finally eliminate the quantized
error by adjusting the parameter 𝜇(𝑘). The adjustment pro-
cedure of 𝜇(𝑘) will be considered in the proof of Theorem 11.

5. Stability Analysis

In this section, a sufficient condition for stability is obtained
for the NQPC system, and the way dynamic quantizer works
is explained.

Firstly, we have the following lemma.

Lemma 10. System state 𝑧(𝑘) that starts from region 𝑅
1

described in (30) will enter region 𝑅
𝑖+1

in 𝑖𝜋 steps, where 𝑅
𝑖+1

can be given by

𝑅
𝑖+1

= {𝑧 (𝑘) : 𝑧
𝑇

(𝑘) 𝑃𝑧 (𝑘) ≤ 𝜇 (𝑘)
2
𝑀
2

ϝ


2
𝜆min (𝑃)} . (22)

Proof of Lemma 10 is in the appendix, and𝑅
1
,𝜋,𝜇(𝑘), and

ϝ are defined in the proof of Theorem 11.
Then, main result of our paper is presented by the

following theorem.

Theorem 11. For NQPC system (16) with time-varying delay
and packet loss in the forward channel, it is asymptotically
stable if there exist 𝑃 = 𝑃

𝑇

> 0 and 𝛼 > 0 satisfying that

(1 + 𝛼) Ξ
𝑇

𝑖
𝑃Ξ
𝑖
− 𝑃 < 0, (23)

where 𝑖 = {0, 1, 2, . . . , 𝑁}.

Proof. Firstly, let 𝑉(𝑘) = 𝑧
𝑇

(𝑘)𝑃𝑧(𝑘), where 𝑃 ∈

R[𝑛(3𝑁+3+𝑁(𝑁+1)/2)+𝑙𝑁]×[𝑛(3𝑁+3+𝑁(𝑁+1)/2)+𝑙𝑁] is a positive defi-
nite matrix, and Δ𝑉(𝑘) can be obtained as

Δ𝑉 (𝑘) = 𝑉 (𝑘 + 1) − 𝑉 (𝑘)

= 𝑧
𝑇

(𝑘 + 1) 𝑃𝑧 (𝑘 + 1) − 𝑧
𝑇

(𝑘) 𝑃𝑧 (𝑘)

= 𝑧
𝑇

(𝑘) (Ξ
𝑇

𝜎(𝑘)
𝑃Ξ
𝜎(𝑘)

− 𝑃) 𝑧 (𝑘)

+ 2𝑧
𝑇

(𝑘) Ξ
𝑇

𝜎(𝑘)
𝑃𝐵𝜔 (𝑘) + 𝜔

𝑇

(𝑘) 𝐵
𝑇

𝑃𝐵𝜔 (𝑘)

≤ 𝑧
𝑇

(𝑘) [(1 + 𝛼) Ξ
𝑇

𝜎(𝑘)
𝑃Ξ
𝜎(𝑘)

− 𝑃] 𝑧 (𝑘)

+ (1 + 𝛼
−1

) 𝜔
𝑇

(𝑘) 𝑃𝜔 (𝑘)

≤ − [𝜆min (𝐷𝑖) |𝑧 (𝑘)|
2

+ (1 + 𝛼
−1

)

𝐵
𝑇

𝑃𝐵

Δ
2

𝜇
2

(𝑘)]

≤ − [𝜆min (𝐷) |𝑧 (𝑘)|
2

+ (1 + 𝛼
−1

)

𝐵
𝑇

𝑃𝐵

Δ
2

𝜇
2

(𝑘)] ,

(24)

where 𝛼 is a positive scalar, 𝐷
𝑖
= −[(1 + 𝛼)Ξ

𝑇

𝑖
𝑃Ξ
𝑖
− 𝑃] is

assumed to satisfy𝐷
𝑖
> 0 for 𝑖 = {0, 1, 2, . . . , (𝑁

1
+1)(𝑁

2
+1)−

1}, and 𝜆min(𝐷) = min[𝜆min(𝐷𝑖)], where 𝜆min(𝐷𝑖) denotes
the smallest eigenvalue of𝐷

𝑖
.



Mathematical Problems in Engineering 7

It is clear that Δ𝑉(𝑘) < 0 when Theorem 11 is satisfied,
and the state of (16) outside the region

𝐻 = {𝑧 (𝑘) : |𝑧 (𝑘)| ≤ ΘΔ𝜇 (𝑘)} (25)

will ultimately converge to 𝐻, where Θ =

√(1 + 𝛼−1)‖𝐵
𝑇

𝑃𝐵‖/𝜆min(𝐷).

To ensure asymptotic stability of the system (16) inside
region𝐻, the “zoom” method proposed in [15, 16] is used for
the following proof.

The zooming-in stage is as follows.
Rewrite 𝜔(𝑘) as 𝜔(𝑘) = 𝑞

𝜇
(ϝ𝑧(𝑘)) − ϝ𝑧(𝑘), where

ϝ = [𝐾 0
𝑝×𝑛(3𝑁+1+𝜏(𝑘)(𝑁+1)−𝜏(𝑘)(𝜏(𝑘)−1)/2)

𝐶
𝑄
0
𝑝×𝑛(𝑁(𝑁+3)/2−𝜏(𝑘)(𝑁+1)−𝜏(𝑘)(𝜏(𝑘)−1)/2)

] . (26)

Let 𝜇(𝑘) = 𝛽
𝑘, where 𝛽 is a given constant satisfying 𝛽 <

1. Then 𝜇(𝑘) can be initialized as

𝜇 (0) = ‖𝐴‖
𝛾

, (27)

where 𝛾 = min{𝑘 ≥ 1 : ‖𝑞
𝜇
(ϝ𝑧(𝑘)/𝜇(𝑘))‖ ≤

𝑀√𝜆min(𝑃)/𝜆max(𝑃) − Δ/2}.
It follows that



ϝ𝑧 (𝑘)

𝜇 (0)



≤



𝑞
𝜇
(
ϝ𝑧 (𝑘)

𝜇 (0)
)



+
Δ

2
≤ 𝑀√

𝜆min (𝑃)

𝜆max (𝑃)
. (28)

Then we can obtain that

𝑧𝑘
 ≤

𝑀𝜇 (0)

ϝ


√
𝜆min (𝑃)

𝜆max (𝑃)
. (29)

Therefore, we can get that the initial state 𝑧(0) belongs to
the region

𝑅
1
= {𝑧 (𝑘) : 𝑧

𝑇

(𝑘) 𝑃𝑧 (𝑘) ≤
𝑀
2

ϝ


2

𝜇
2

(0) 𝜆min (𝑃)} . (30)

Define the scaling factor 𝜒 as

𝜒 = √
𝜆max (𝑃)

𝜆min (𝑃)
√Θ2 + 𝜀

ϝ
 Δ𝑀
−1

, (31)

where 𝜀 > 0 is a fixed constant. Choose𝑀, Δ in (31) to ensure
𝜒 < 1, and it is clear that 𝑅

1
⊃ 𝐻, and 𝑧(𝑘) will never leave

𝑅
1
.
The zooming-out stage is as follows. Define

�̂� =
𝑀
2

𝜆min (𝑃)
ϝ


2

𝜆min (𝐷) Δ
2𝜀

−
Θ
2

𝜆max (𝑃)

𝜆min (𝐷) 𝜀
,

𝜇 (𝑘) = 𝜒
⌊𝑘/𝜋⌋

𝜇 (0) ,

(32)

where 𝑘 ≥ 0 and 𝜋 = ⌊�̂�⌋, and it is clear that �̂� > 0 as 𝜒 < 1.
From Lemma 10, we can obtain that the system state 𝑧(𝑘)

belongs to 𝑅
2
for 𝑘 ≥ 𝜋

𝑅
2
= {𝑧 (𝑘) : 𝑧

𝑇

(𝑘) 𝑃𝑧 (𝑘) ≤ (𝜒𝜇 (0))
2 𝑀
2

ϝ


2

𝜆min (𝑃)} , (33)

where 𝜇(𝑘) = 𝜒𝜇(0) for 𝑘 ≥ 𝜋.
It is clear that the radius of region 𝑅

2
becomes smaller

than 𝑅
1
, which means that the state of the system converges

after 𝜋 steps from the initial state.
Similarly, we have the system state 𝑧(𝑘) belonging to 𝑅

𝑖+1

for 𝑘 ≥ 𝑖𝜋

𝑅
𝑖+1

= {𝑧 (𝑘) : 𝑧
𝑇

(𝑘) 𝑃𝑧 (𝑘) ≤ (𝜒
𝑖

𝜇 (0))
2 𝑀
2

ϝ


2

𝜆min (𝑃)} , (34)

where 𝜇(𝑘) = 𝜒𝑖𝜇(0) for 𝑘 ≥ 𝜋.
As a result, it can be obtained that 𝜇(𝑘) → 0 when 𝑘 →

∞ and lim
𝑘→∞

|𝑧(𝑘)| = 0 as the radius of 𝑅
𝑛
(𝑛 → ∞) goes

to 0, and then the proof of Theorem 11 is completed.

6. Simulation and Practical Examples

In this section, both simulation and practical examples are
given to illustrate the advantages of the proposed method.

6.1. Simulation Example. Consider the discrete-time plant
described by

𝐴 = [
0.9994 0.0096

−0.1125 0.9154
] , 𝐵 = [

4.8563 × 10
−5

0.0096
] ,

𝐶 = [17630 11840]

(35)

which is controlled over the network, and matrices 𝐴, 𝐵, and
𝐶 are obtained through system identification of theDCmotor
with sampling period 10ms. Set 𝑁 = 9, which means that
the maximum delay in the forward channel is 90ms. The
networked delay in our simulation is shown in Figure 3.

Choose𝐾 and 𝐿 to be

𝐾 = [−6.75 −4.784] ,

𝐿 = [1.763 × 10
−6

1.184 × 10
−6

] .

(36)

There exist positive scalars 𝛼 = 0.01, positive definite matrix
𝑃, and quantizer parameters Δ = 0.05, 𝑀 = 6 satisfying
Theorem 8.

Let Ω = 0.8, 𝜏 = 80, and give a step input to the plant at
𝑡 = 1 s. Then simulation results of the system can be shown
in Figure 4, where the proposed quantized predictive control
method is compared with six other methods: the predictive
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Figure 3: Networked delay in simulation.
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Figure 4: Outputs of the system in simulation.

method without quantization, the predictive method using
quantizer in [17], the predictive method using quantizer in
[15], networkedmethodwithout prediction and quantization,
the proposed quantized method without prediction, and
local method. It is clear in Figure 4 that proposed quantized
predictive control method is better than other quantized
predictive control methods and is more similar to local
control, which means that the proposed method is able to
compensate the networked delay well.

6.2. Experimental Example. A test rig was built in our lab
to test the proposed method, whose experimental diagram
is given in Figure 5. Signals were sent from the control
box (Figure 8) to the actuator with the help of the trans-

Observer
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Figure 5: Experimental diagram.
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Figure 6: Networked delay in experiment.

mission board (Figure 9). The control box’s IP address
is 192.168.100.20, and the computer’s IP address is
192.168.100.21. They communicate with each other by
Wi-Fi IEEE 802.11b.

In our test rig, a DC motor (Figure 10) with sampling
period 10ms is controlled, which can be given by (35).
Matrices 𝐾, 𝐿, 𝑃, and 𝛼 and quantizer parameters Δ, 𝑀, Ω,
and 𝜏 are the same as those in simulation example section.

To illustrate the effectiveness of the proposed method,
seven cases are studied. Firstly, predictive control without
quantization is studied. Then the proposed quantized pre-
dictive control method is studied, where networked delay
varies between 0 s and 0.18 s as shown in Figure 6. Compared
with the proposed method, quantized predictive control
methods using quantizer in [15, 17] are studied. Meanwhile,
networked control without prediction, quantized control
without prediction, and local control are studied. Results of
the experiments are given in Figure 7, and it is clear that
proposed method performs well and its output of DC motor
is very close to that of the local control method.

7. Conclusion

The design and stability of networked quantized predictive
control systems where time-varying delay and packet loss
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Figure 8: The control box.

Figure 9: The transmission board.

Figure 10: The DC motor.

occur in the forward channel have been investigated in
this paper. Based on predictive control method, a model
that considers delay, packet loss, and optimal quantization
has been analyzed. By redesigning the original dynamic
quantizer, a dynamic quantizer that can minimize output
error of our system is obtained. The stability problem of
the given NQPC system has been transformed into stability
of a switched system, and a sufficient condition has been
presented. Finally, effectiveness of our method has been
shown by both simulation and experimental examples.

Appendix

Proof of Lemma 10. Assume the system state at instant 𝜋
satisfying that

𝑧
𝑇

(𝜋) 𝑃𝑧 (𝜋) ≤ Δ
2

𝜇
2

(0) (Θ
2

+ 𝜀) 𝜆max (𝑃) . (A.1)

If inequality (A.1) is not true, then we have

𝑧
𝑇

(𝜋) 𝑃𝑧 (𝜋) > Δ
2

𝜇
2

(0) (Θ
2

+ 𝜀) 𝜆max (𝑃) (A.2)

which means that |𝑧(𝜋)|2 > Δ2𝜇2(0)(Θ2 + 𝜀) for all 𝑘 ∈ [0, 𝜋].
From (30) and (A.2) we can obtain that

𝑧
𝑇
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2

(0) (Θ
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+ 𝜀) 𝜆max (𝑃) −
𝑀
2

ϝ


2
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2
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Δ
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𝜇
2

(0) −
𝑀
2

ϝ


2
𝜇
2

(0) 𝜆min (𝑃) .

(A.3)

Nevertheless, from (24), (A.1), and 𝜒 < 1, the following
inequality can be obtained:

Δ𝑉 (𝜋 − 1)

= 𝑧
𝑇

(𝜋) 𝑃𝑧 (𝜋) − 𝑧
𝑇

(𝜋 − 1) 𝑃𝑧 (𝜋 − 1)

≤ −𝜆min (𝐷) |𝑧 (𝜋 − 1)|
2

+ 𝜆min (𝐷)Θ
2

Δ
2

𝜇
2

(0)

< −𝜆min (𝐷) Δ
2

𝜇
2

(0) 𝜀.

(A.4)
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Similarly, it can be obtained that

Δ𝑉 (𝜋 − 𝑗)

= 𝑧
𝑇

(𝜋 − 𝑗 + 1) 𝑃𝑧 (𝜋 − 𝑗 + 1) − 𝑧
𝑇

(𝜋 − 𝑗) 𝑃𝑧 (𝜋 − 𝑗)

≤ −𝜆min (𝐷)
𝑧 (𝜋 − 𝑗)
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2
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(A.5)

where 𝑗 = {1, 2, 3, . . . , 𝜋}.
Then we have
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(A.6)

As there is a contradiction between (A.3) and (A.6), validity
of (A.1) has been proved.

Based on (A.1) and 𝜒 < 1, it follows that

𝑧
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(A.7)

Thus, 𝑧(𝜋) belongs to
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2
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For 𝜋 ≤ 𝑘 ≤ 2𝜋, a similar result can be obtained as
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Moreover, for (𝑖 − 1)𝜋 ≤ 𝑘 ≤ 𝑖𝜋, it can be obtained that
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which means that the scaling factor 𝜇(𝑘) is narrowed every 𝜋
steps. That is, 𝑧(𝑖𝜋) belongs to

𝑅
𝑖+1

= {𝑧 (𝑘) : 𝑧
𝑇

(𝑘) 𝑃𝑧 (𝑘) ≤ (𝜒
𝑖

𝜇 (0))
2 𝑀
2
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2
𝜆min (𝑃)} . (A.11)

The proof of Lemma 10 is completed.
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