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Abstract This paper focuses on the cooperative adap-
tive fuzzy control of multiple high-order nonlinear
dynamics. The communication network topology is
undirected and fixed. Each individual dynamics is
modeled by a high-order integrator incorporating with
unknown nonlinear dynamics and an unknown exter-
nal disturbance. With the approximation capability of
fuzzy logic systems, the unknown nonlinear dynam-
ics is compensated by the adaptive fuzzy logic sys-
tems scheme. The negative effects of the approxima-
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tion error and external disturbances are counteracted
by employing the robustness terms. Under the back-
stepping framework, two cooperative adaptive fuzzy
controllers are designed for each agent such that all
agents ultimately achieve consensus. Moreover, these
controllers are distributed in the sense that only the
local state information between the agent and its neigh-
bors is required to design the controller. Finally, a simu-
lation example with four-order dynamics demonstrates
the effectiveness of the algorithms.

Keywords Multi-agent systems · Distributed
control · High-order dynamics · Backstepping ·
Fuzzy logic systems

1 Introduction

Because of better description of the actual physical sys-
tem, the nonlinear dynamics has beenwidely concerned
[1]. A series of techniques and tools have been devel-
oped to address a variety of nonlinear dynamics control
problems, and numerous results have been obtained.
With advances in technology and industrial needs, the
control of a single system has become increasingly
unable to meet the needs of many practical engineering
applications such as cooperative control of unmanned
ground/air/underwater vehicles [2–4], distributed sen-
sor networks [5], aggregation and rendezvous control
[6], and attitude alignment of spacecraft [7]. Coop-
erative control of multiple nonlinear dynamics has
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64 J. Huang et al.

received increasing attention by the fact that many
benefits can be obtained when a single complicated
dynamics is equivalently replaced by multiple simpler
ones, especially with lower operational costs, less sys-
tem requirements, higher robustness, stronger adaptiv-
ity, andmore flexible scalability. Due to the fact that the
single systemcontrol scheme cannotmake goodperfor-
mance for multiple complex dynamics, decentralized
and distributed control scheme has been investigated
in the past decade particularly. Among the existing
works with respect to multiple system coordination [8–
12,30,31], most of them studied only the first- and
second-order dynamics. However, in many practical
engineering applications, many systems are modeled
by higher-order dynamics, such as flexible joint manip-
ulator [1,13–15] and jerk system. It is not accept-
able to model the plant dynamics with only single- or
double-integrator dynamics. Hence, it is necessary to
investigate the coordination problem from lower-order
dynamics to higher-order nonlinear ones.

Compared with the first-order and second-order
dynamics, the high-order dynamics involvemoredetails
related to the interactions between the system dynam-
ics (states and their derivatives) and the communica-
tion graph [32]. Besides the aforementioned, in many
practical applications, the dynamics of the systems is
not only nonlinear, but also with uncertainties, thus
solving consensus problems for multiple higher-order
uncertain nonlinear dynamics would make great sense
for practical applications. Cooperative control of high-
order nonlinear systems with uncertainties is more
challenging than that of certain high-order linear ones.
The extension of adaptive control to high-order nonlin-
ear dynamics is not straightforward because of both the
growth of the order and the local information interac-
tions between neighboring dynamics. The challenge is
to make sure that both the control protocols and the
parameter update laws are distributed. That is, they
are only allowed to depend only on locally available
information about the current system and its neighbors.
High-order systems containmore states and their deriv-
atives, so the design of adaptive control becomes more
complicated. This requires the careful crafting of a suit-
able Lyapunov function, which automatically yields
a distributed adaptive controller that depends only on
local information.

Because of the inherent characteristics of multi-
ple linear systems, matrix theory approaches are fre-
quently used in stability analysis. In [16], Ren et al.

showed a matrix approach-based framework for high-
order multi-agent systems. They defined a class of
l-order consensus algorithms and showed necessary
and sufficient conditions under which each information
variable and their higher-order derivatives converged
to common values. Jiang and Wang [17] investigated
the consensus problem for multi-agent systems with
individual agents modeled by high-order integrators
under fixed/switching topology and zero/nonzero com-
munication time-delays. In [18], consensus of high-
order integrators multi-agent systems with time-delays
and switching topologies were studied. Coordination
of high-order linear systems with disturbances was
investigated in [19]. Discrete-time high-order linear
multi-agent systems were considered in [20], and the
results for the general high-order linear time-invariant
(LTI) systems was published in [21]. Dong et al.[22]
considered the tracking control problem. Distributed
robust/adaptive control laws were proposed such that
the states of each system converged to the desired
trajectory asymptotically. However, the model of the
systems are without uncertainties. In [23], Dong con-
sidered a group of third-order nonlinear systems with
parameter uncertainties using backstepping techniques
and adaptive control method. But the proposed control
law do not work when the order of systems is larger
than three. It is worth noting that the control algorithm
in [23] cannot easily extend to the high-order nonlinear
systems with uncertainties at each order. In [24], high-
order nonlinear dynamics tracking control was consid-
ered by using the neural network(NN) technique. How-
ever, the drawback of [24] is that the NN update laws
are using global Laplacian matrix.

In this paper, we tried to solve the high-order nonlin-
ear multi-agent systems control problem under distrib-
uted backstepping framework. The key to the design
of distributed controller is the selection of a sequence
of suitable Lyapunov functions and the adaptive laws
that depend on the graph topology and the model of
the system. The basis for the selection of suitable
graph-dependent Lyapunov functions was laid in the
backstepping techniques on the graph. A distributed
recursive design approach is proposed to archive con-
sensus of multiple high-order nonlinear systems with
uncertainties. The main contributions of this paper
include the following: first, this paper reviews themajor
results and progress in distributed higher-order net-
worked nonlinear dynamics coordination. A kind of
practical multiple higher-order nonlinear systems in
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the Brunovsky form with uncertainties is considered,
which include first- and second-order systems as spe-
cial cases. Second, a systematic controller design pro-
cedure is proposed to deal with the control problem
through combining distributed backstepping method
with adaptive fuzzy control techniques. The adaptive
fuzzy control is completely distributed.And the conver-
genceof the systemerrors is proved rigorously byvirtue
of the Lyapunov stable theory and Barbalat’s lemma.

The subsequent sections are organized as follows: In
Sect. 2, the control problem is formally stated and the
background aswell as necessary preliminaries concern-
ing the control problemare given. In Sect. 3, the cooper-
ative control laws are proposed relying on backstepping
method and adaptive fuzzy control approaches. The
unknown nonlinear functions are dealt by fuzzy logic
systems, and the external disturbances are addressed
by applying robust adaptive control method. In Sect. 4,
a four-order simulation example is provided to demon-
strate the performance of the proposed control laws.
The last section concludes this paper.

2 Preliminaries and problem statement

In this section, basic graph theory for networked
dynamics, control problem and fuzzy logic systems on
graph are introduced.

2.1 Brief graph theory for networked dynamics

With respect to networked dynamics, any control laws
must be distributed in the sense that it respects the
communication network topology. The communication
restrictions by topologies can severely limit the power
of local distributed control algorithm at each individ-
ual dynamics. The idea of a communication network
models the information flows in a multi-agent group.
A team of m high-order nonlinear dynamics labeled
as system 1 to m are considered. The communica-
tion topology among the m systems is assumed to be
bidirectional or directional, and the interactions among
the nodes are represented by an undirected or directed
graph G = (V, E,A). The topology G represents the
structure of networked system, where V is a set of the
indices of the systems and E ⊆ V ×V is a set of edges
that describe the communications between the systems.
If (p, j) ∈ E , then p is neighboring to j , meaning sys-
tem j can obtain information from system p. A is a

weighted adjacencymatrixwith nonnegative adjacency
elements apj . Moreover, it is assumed that app = 0. If
the state of system p is available to system j , then sys-
tem p is said to be a neighbor of system j . The neighbor
set of node v j is denoted by N j , where j /∈ N j [25].

2.2 Problem statement

In practice, there are several cases where the individual
dynamics can be described by a higher-order form. For
example, the jerk system is described by third-order
differential equations [1]. A single-link flexible joint
manipulator can be modeled by a fourth-order nonlin-
ear system. A group of unmanned aerial vehicle forma-
tion control problem, in essence, is a high-order multi-
agent system network coordination problem. In partic-
ular, the features of high order is more obvious during
the aircraft through tacticalmaneuvers. In addition, due
to the imprecision measurement and interactions with
complex environments, networked nonlinear systems
with uncertainties and external disturbances have to
be investigated simultaneously in practice. For those
complex nonlinear dynamics, the Brunovsky canoni-
cal form can been obtained through the linearization
method. In the process of model transformation, the
unmodeled dynamics and disturbances are embodied
in the smooth nonlinear function and external distur-
bances.

Take the single-link flexible joint manipulator as a
representative example,whose dynamics can bewritten
as [15]

ẋ1 = x2, ẋ2 = −MgL

I
sinx1 − k

I
(x1 − x3),

ẋ3 = x4, ẋ4 = k

J
(x1 − x3) + 1

J
u,

where I , J are, respectively, the link and the rotor iner-
tia moments, M is the link mass, k is the joint elastic
constant, L is the distance from the axis of the rota-
tion to the link center of mass and g is the gravitational
acceleration, respectively. This nonlinear dynamics can
be transformed to the higher-order normal form with
z1 = x1 as

ż1 = z2, ż2 = z3, ż3 = z4, ż4 = a(z) + b(z)u,

In this paper, we consider a group of m (m ≥ 2)
systems with non-identical dynamics distributed on
an undirected communication network G. The dynam-
ics of the j-th system is described in the nonlinear
Brunovsky form as
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ẋi j = x(i+1), j (1)

ẋn j = u j + f j (x j ) + ζ j (t) (2)

for i = 1, . . . , n − 1, where xi j ∈ R is the i-th state of
the j-th system; x j = [x1 j , . . . , xnj ]T ∈ Rn is the state
vector of system j ; f j (x j ) : Rn → R is locally Lip-
schitzwith f j (0) = 0, and it is assumed to be unknown;
u j ∈ R is the control protocol of the j-th system;
ζ j (t) ∈ R is an external disturbance, including the
noise, unstructured unmodeled dynamics, and approx-
imation error from linearization, which is unknown
but bounded. It’s worth noting that this linearization
is more empirical to easily use a priori knowledge to
approximate the nonlinear function f (x).

Assumption 1 The external disturbances ζ j (t) for j =
1, . . . ,m are unknown and bounded, that is, |ζ j (t)| ≤
ζ j with ζ j being a known constant.

This bound ζ j is used to determine the parameters of
the controller. In practice, the exact bound value is not
the necessary condition, and any number larger than the
precise bound value can be used for controller design.

Assumption 2 The communication graph G is fixed
and connected.

The main goal of this paper is to design a distributed
control law for the j-th system based on its own local
states information when the communication topology
is fixed and connected, such that

|x1 j − x1l | → 0, as t → ∞ for j, l = 1, . . . ,m. (3a)

xi j → 0, as t → ∞ for i = 2, . . . , n. (3b)

2.3 Fuzzy logic systems on graph [26–29]

Since the nonlinear term f j (x j ) of the system (1–2)
is unknown but with priori knowledge, in this paper,
based on the fuzzy logic systems (FLS), the unknown
function f j (x j ) can be approximated by f̂ j (x j ), where
f̂ j (x j ) = θTj φ j (x), and φ j (x j ) = [φ1 j (x j ), . . . ,

φnj (x j )]T is a regressive vector. The knowledge base
for the j-th FLS can be divided into some fuzzy IF-
THEN rules and a fuzzy inference engine. By using
product inference, center-average, and singleton fuzzi-
fier [29], the output of the j-th FLS on graph can be
expressed as

y j (x j ) =
∑N

l=1 yl j
∏n

i=1 μFl
i j
(xi j )

∑N
l=1

[∏n
i=1 μFl

i j
(xi j )

] (4)

where x j = (x1 j , . . . , xnj )T and y j are the FLS input
and output, respectively; yl j = maxy j∈RμGl

j
(y j ); Fl

i j

and Gl
j are the fuzzy sets associating with the fuzzy

functions μFl
i j
(xi j ) and μGl

j
(y j ); N is the rule number

of IF-THEN.
Define the fuzzy basis functions for the j-th system

as

φl j =
∏n

i=1 μFl
i j
(xi j )

∑N
l=1

[∏n
i=1 μFl

i j
(xi j )

] (5)

Denoting θTj = [y1 j , . . . , yN j ] = [θ1 j , . . . , θN j ] and
φ j (x j ) = [φ1 j (x j ), . . . , φN j (x j )], then FLS (4) can be
rewritten as

y j (x j ) = θTj φ j (x j ) (6)

Lemma 1 [29]: Let f j (x j ) be a continuous function
defined on a compact set Ω . Then for any constant
ε j > 0, there exists an FLS (6) such that

supx j∈Ω | f j (x j ) − θTj φ j (x j )| ≤ ε j (7)

3 Distributed control laws design

In this section,we showhow to design distributed adap-
tive fuzzy controller for agents based on distributed
backstepping techniques. Basic definitions are given
and the local neighborhood virtual controllers are intro-
duced. Some requirements on the topology are laid out,
and a series of Lyapunov functions are given.

3.1 Local neighborhood virtual controllers

The systems (1)–(2) are with strict-feedback form.
Owing to the structure character of the lower-triangular
strict-feedback system, the high-rank state of each dif-
ferential equation is used as virtual control. In this
way, the consensus control problem for the higher-
ordermultiple systems can be broken into a sequence of
design problems for multiple lower-order subsystems.
We need to define a set of new variables for virtual
control design in distributed manner.

Definition 1 We define a set of new variables z∗ j =
[z1 j , z2 j , . . . , znj ]T with the aid of backstepping tech-
nique as follows

z1 j = x1 j (8)

zi j = xi j − αi j , 2 ≤ i ≤ n (9)
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where j = 1, . . . ,m, αi j is the virtual control function
which is to be elaborately designed through recursive
backstepping method. Both z∗ j and αi j are local.

3.2 Recursive controller design procedure

Different from the centralized scheme, the distributed
recursive backsteppingmethod only use the local infor-
mation. The sequence of virtual controllers are also
designed relying on local information. The highlight
of this paper is to design the virtual controllers not
only in a recursive way like other ordinary backstep-
pingmethods do, but also in a distributedmannerwhich
make the design proceduremuchmore difficult than the
centralized methods. Furthermore, due to the complex
intrinsical nonlinearity described in formulation (2), an
adaptive, fuzzy and robust control schememust be con-
sidered synthetically. The actual controllers u j can be
derived fromαnj afterαnj is thoughtfully designed. The
detailed recursive design procedure is given as follows:

In the first step, α2 j is used to denote the first vir-
tual controller of system j . Using (1) for (8), it can be
derived that

ż1 j = z2 j + α2 j (10)

Consider the error variable z1 j = x1 j of the first-
order subsystem of (1)–(2), and choose the Lyapunov
function candidate V1 as follows

V1 = 1

2
zT1∗z1∗ (11)

where z1∗ = [z11, z12, . . . , z1m]T .
Taking the time derivative of V1 and following (9)

and (10), we can obtain

V̇1 =
m∑

j=1

z1 j (z2 j + α2 j ) (12)

Design the first distributed virtual controller α2 j as

α2 j = −
∑

l∈N j

a jl(z1 j − z1l) (13)

whereN j denotes the neighbor set of the j-th agent and
no global information states are included in α2 j , a jl

represents the weighted adjacency between the neigh-
boring agents and all the a jl are assumed to be 1
hereinafter. Information in communication networks
only travels directly between immediate neighbors in
a graph. Nevertheless, if a graph is connected, then

this locally transmitted information travels ultimately
to every agent in the graph.

With the aid of Eq.(13), (10) can be written as

ż1 j = −
∑

l∈N j

(z1 j − z1l) + z2 j (14)

and V̇1 can be written as

V̇1 = −zT1∗Lz1∗ +
m∑

j=1

z1 j z2 j (15)

In the second step, by considering Eq.(9) and the
second order of Eq.(1), it can be obtained that

ż2 j = x3 j − α̇2 j

= z3 j + α3 j − ∂α2 j

∂x1 j
x2 j −

∑

l∈N j

∂α2 j

∂x1l
x2l (16)

where α3 j is treated as a virtual controller for a high-
order subsystemwhich would be designed to guarantee
the consensus of the first-order and the second-order
subsystems for the multiple high-order systems. That
is, the virtual controller α3 j is to be designed such that
lim
t→∞(z1 j − z1l) = 0 and lim

t→∞ z2 j = 0 for 1 ≤ j ≤ m.

Hence, choose the second Lyapunov function can-
didate V2 as

V2 = V1 + 1

2
zT2∗z2∗ (17)

where z2∗ = [z21, z22, . . . , z2m]T . Taking the time
derivative ofV2 with respect to (15) and (16),we can get

V̇2 = V̇1 +
m∑

j=1

z2 j ż2 j

= −zT1∗Lz1∗ +
m∑

j=1

z1 j z2 j +
m∑

j=1

z2 j

⎡

⎣z3 j + α3 j

− ∂α2 j

∂x1 j
x2 j −

∑

l∈N j

∂α2 j

∂x1l
x2l

⎤

⎦ (18)

In order to ensure that the time derivative of Lya-
punov function V2 is negative definite, an appropriate
distributed virtual control α3 j should be designed. α3 j

is designed as

α3 j = −z1 j−c2 j z2 j + ∂α2 j

∂x1 j
x2 j +

∑

l∈N j

∂α2 j

∂x1l
x2l (19)

where c2 j is the design parameter, satisfying c2 j > 0.
Note thatα3 j only contains its own state information

and neighbors’ information without using any global
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information generally. The two items − ∂α2 j
∂x1 j

x2 j and

−∑
l∈N j

∂α2 j
∂x1l

x2l in Eq. (18) are directly canceled by
the design of α3 j . Furthermore, the item −z1 j in α3 j

is designed to make sure that the item
∑m

j=1 z1 j z2 j in
Eq. (18) can be eliminated. And the item −c2 j z2 j in
Eq. (19) is designed to ensure the negative definite of
the Eq. (18). The item

∑m
j=1 z2 j z3 j in Eq. (20) will be

handled in the third step by choosing an appropriate
virtual controller α4 j .

Therefore, by substituting (19) into (18), V̇2 can be
rewritten as follows

V̇2 = −zT1∗Lz1∗ − zT2∗diag(c2∗)z2∗ +
m∑

j=1

z2 j z3 j (20)

where c2∗ = [c21, c22, . . . , c2m]T .
In step i , where 1 ≤ i ≤ n − 1. Follow the design

procedure which is similar to the first and second step,
it can be obtained that

żi j = x(i+1) j − α̇i j

= z(i+1) j + α(i+1) j −
i−1∑

k=1

∂αi j

∂xk j
x(k+1) j

−
i−1∑

k=1

∑

l∈N j

∂αi j

∂xkl
x(k+1)l (21)

In (21), the virtual controller α(i+1) j which can guaran-
tee the consensus of themultiple i-rank (1 < i < n−1)
subsystems would be designed such that lim

t→∞ zk j = 0

for 1 ≤ j ≤ m and 1 ≤ k ≤ n − 1, with the aid of the
Lyapunov function

Vi = Vi−1 + 1

2
zTi∗zi∗ (22)

Note that Vi−1 can be designed in the i − 1 step by the
recursive method. Taking the time derivative of Vi with
considering Vi−1 in step i and (21), we can get

V̇i = V̇i−1 +
m∑

j=1

zi j żi j

= −zT1∗Lz1∗ −
i−1∑

j=2

zTj∗diag(c j∗)z j∗

+
m∑

j=1

z(i−1) j zi j +
m∑

j=1

zi j

[

−
i−1∑

k=1

∂αi j

∂xk j
x(k+1) j

+ z(i+1) j + α(i+1) j −
i−1∑

k=1

∑

l∈N j

∂αi j

∂xkl
x(k+1)l

⎤

⎦

(23)

Choose the virtual controller α(i+1) j as

α(i+1) j = −z(i−1) j − ci j zi j +
i−1∑

k=1

∂αi j

∂xk j
x(k+1) j

+
i−1∑

k=1

∑

l∈N j

∂αi j

∂xkl
x(k+1)l (24)

where ci j is the design parameter and satisfy ci j > 0.
Substituting (24) into V̇i , it is obtained that

V̇i = −zT1∗Lz1∗ −
i∑

j=2

zTj∗diag(c j∗)z j∗

+
m∑

j=1

zi j z(i+1) j (25)

where ci∗ = [ci1, ci2, . . . , cim]T .
In the last step, FLS is used to approximate the

unknown term f j (x j ) of the nonlinear dynamics (2).
Define the minimal approximation error ε j = f j (x j )
− f j (x j |θ∗

j ), where f j (x j |θ∗
j ) = θ∗T

j φ j (x j ), and θ∗
j is

the optimal fuzzy parameter vector. Based on the FLS
(4)–(6), the unknown function f j (x j ) can be approxi-
mated by f̂ j (x j ) = θ̂Tj φ j (x j ), where θ̂ j is the estima-

tion of θ∗
j , and φ j (x j ) = [φ1 j (x j ), . . . , φnj (x j )]T is a

regressive vector.

Assumption 3 [33,34] There exists a known positive
constant ε̄ j , such that |ε j | ≤ ε̄ j .

Remark 1 By Lemma 1, a fuzzy logic system has the
approximation capability for any continuous smooth
function. Thus, it is generally assumed that the fuzzy
minimum approximation errors ε j ( j = 1, . . . ,m) are
bounded with known upper bounds ε̄ j , for example,
[33,34] and the references therein. In this subsection,
Assumption 3 is adopted. However, in practice, it is dif-
ficult to determine the upper bounds ε̄ j . In literatures,
the approach to estimating them online via adaptation
laws is proposed [35–37]. In Sect. 3.3, we will discuss
the design procedure in detail when the parameter ε̄ j

is unknown.

By applying the results in the 1 to n− 1 steps, it can
be obtained that

żn j = u j + f j (x j ) + ζ j − α̇nj

= −
n−1∑

k=1

∂αnj

∂xk j
x(k+1), j −

n−1∑

k=1

∑

l∈N j

∂αnj

∂xkl
x(k+1),l

+ f j (x j |θ∗
j ) + ε j + ζ j + u j (26)
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Hence, choose then-thLyapunov function candidate
Vn as

Vn = Vn−1 + 1

2
zTn∗zn∗ + 1

2

m∑

j=1

θ̃Tj Γ −1
j θ̃ j (27)

where θ̃ j = θ∗
j − θ̂ j is the fuzzy parameter error vector.

Taking the time derivative of Vn with respect to (25)
and (26), we obtain

V̇n = V̇n−1 +
m∑

j=1

znj żn j +
m∑

j=1

θ̃Tj Γ −1
j

˙̃
θ j

= −zT1∗Lz1∗ −
n−1∑

i=2

zTi∗diag(ci∗)zi∗ +
m∑

j=1

z(n−1) j zn j

+
m∑

j=1

znj

[

u j + f j (x j |θ∗
j )+ε j−

n−1∑

k=1

∂αnj

∂xk j
x(k+1) j

−
n−1∑

k=1

∑

l∈N j

∂αnj

∂xkl
x(k+1)l + ζ j

⎤

⎦ +
m∑

j=1

θ̃Tj Γ −1
j

˙̃
θ j

(28)

We choose the adaptation laws:

˙̂
θ j = Γ j zn jφ j (29)

where Γ j is positive definite matrices, Note that znj
only contains the local information. And the distributed
control law is

u j = −z(n−1) j − cnj znj +
n−1∑

k=1

∂αnj

∂xk j
x(k+1) j

+
n−1∑

k=1

∑

l∈N j

∂αnj

∂xkl
x(k+1)l − θ̂Tj φ j (x j )

− ε j sign(znj ) (30)

where −ε j sign(znj ) is the robustness term, which is
utilized to eliminate the effect of the FLC approxima-
tion error and external disturbances, and ε j ≥ ε j + ζ j .

Using (29) and (30) for (28), we can derive

V̇n = −zT1∗Lz1∗ −
n∑

i=2

zTi∗diag(ci∗)zi∗

+
m∑

j=1

znj [ f j (x j |θ∗
j ) − f̂ j (x j ) − ε j sign(znj )

+ ε j + ζ j ] +
m∑

j=1

θ̃Tj Γ −1
j

˙̃
θ j

= −zT1∗Lz1∗ −
n∑

i=2

zTi∗diag(ci∗)zi∗

+
m∑

j=1

znj [θ∗T
j φ j (x j )−θ̂Tj φ j (x j ) − ε j sign(znj )

+ ε j + ζ j ] +
m∑

j=1

θ̃Tj Γ −1
j

˙̃
θ j

≤ −zT1∗Lz1∗ −
n∑

i=2

zTi∗diag(ci∗)zi∗

+
m∑

j=1

znj (ε j + ζ j )

+
m∑

j=1

znj θ̃
T
j φ j (x j ) +

m∑

j=1

θ̃Tj Γ −1
j

˙̃
θ j

−
m∑

j=1

ε j |znj |

≤ −zT1∗Lz1∗ −
n∑

i=2

zTi∗diag(ci∗)zi∗

+
m∑

j=1

(ε j + ζ j )|znj | −
m∑

j=1

ε j |znj | ≤ 0 (31)

Theorem 1 Consider the multiple nonlinear systems
described by (1)–(2), when the Assumptions 1–3 are
satisfied, choose the control law (30) and the adapta-
tion law (29) for system j, where 1 ≤ j ≤ m, then it
guarantees that the control objective (3) holds, that is
the consensus of high-order nonlinear uncertain sys-
tems can be reached asymptotically.

Proof By the above design procedure, define the Lya-
punov function candidate as (27), then we get (31).
Therefore, it follows that zi∗ ∈ L∞, θ̃ j ∈ L∞ and θ̂ j

is bounded according to the boundedness of θ j . From
(8), (9), (13), we get x1 j , α2 j and x2 j are bounded,
furthermore, α3 j is bounded from (19), following this
procedure, we claim that u j is bounded. Using the

above arguments, it follows that żi∗, ˙̃
θ j are all bounded

from (15), (18), (23), (28), (31) and the definition of
φ j and Γ j . By differentiating (31), we can see that
V̈n is bounded, which means V̇n is uniformly contin-
uous. Hence, using Barbalat’s lemma [20], it follows
that V̇n → 0 as t → ∞, i.e., lim

t→∞ zT1∗Lz1∗ = 0 and

lim
t→∞ zl∗ = 0m for 2 ≤ l ≤ n. Using lim

t→∞ z2∗ =0m , (10)
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becomes ż1 j =− ∑

l∈N j

a jl(z1 j−z1l), which implies that

ẋ1 j = − ∑

l∈N j

a jl(x1 j − x1l), thus the consensus is

reached by Lemma 2.10 in [16], i.e., for all x1 j (0) and
all i, j = 1, . . . ,m, |x1i − x1 j | → 0 as t → ∞. We
then obtain lim

t→∞ Lx1∗ = 0m and lim
t→∞ x1∗ = a1m for

some a ∈ R according to L1m = 0m , where 1m and
0m denote the m × 1 column vector of all ones and
zeros. Now, denote x̄1 = 1

n

∑m
j=1 x1 j as the average

of the first-order states, we get ˙̄x1 = 1
n

∑m
j=1 ẋ1 j =

− 1
n 1

T
mLx1∗ = 0, so that ˙̄x1 = 1

n

∑m
j=1 x1 j (0), which

means a = 1
n

∑m
j=1 x1 j (0), and the average consen-

sus of the first-order states has been reached. When
lim
t→∞(x1i − x1 j ) = 0, we get α2 j → 0 as t → ∞, thus

x2 j → 0 will hold from (11) and (15). Following this
step, we can further obtain that xi j → 0 as t → ∞ for
i = 3, . . . , n.

Remark 2 The proposed control law contains the sign
function, thus may lead to control chattering. This sit-
uation can be remedied by smoothing out the control
discontinuity in a thin boundary layer neighboring the
switching surface. To do this, the sign function in the
control law (30) can be replaced by a saturation func-
tion

sat(znj ) =
⎧
⎨

⎩

1 if znj/ϕ j ≥ 1
znj/ϕ j if − 1 < znj/ϕ j < 1
−1 if znj/ϕ j ≤ −1

where ϕ j > 0 is the boundary layer thickness. Though
the boundary layer leads to small terminal tracking
errors, the advantages of practical use may be sig-
nificant [38]. To reject the control chattering and
tackle the problem discussed in Remark 1, a modified
control structure will be developed in the following
subsection.

3.3 Modified control design

In literatures, Assumptions 1 and 3 are commonly
used. However, in this subsection, the condition that the
bounds of the external disturbances and approximation
error are unknown is considered. Thus the Assump-
tions 4 and 5 will be adopted as follows.

Assumption 4 The unknown external disturbances
ζ j (t) for j = 1, . . . ,m are bounded with |ζ j (t)| ≤ ζ j ,
where ζ j is an unknown constant.

Assumption 5 [35–37] There exist unknown positive
constant ε̄ j , such that |ε j | ≤ ε̄ j .

Based on Assumptions 4 and 5, we will discuss the
situation when ε̄ j is unknown in this subsection. An
adaptive parameter ε̂ j will be used to estimate ε̄ j , where
ε j ≥ ε j + ζ j . The detailed design process is given in
the following analysis.

Denote z′nj = znj − ϕ j sat(znj ), where ϕ j > 0. The
modify control law and adaptive laws are proposed as
follows:

˙̂
θ j = Γ j z

′
njφ j (x j ) (32)

˙̂ε j = κ1 j |z′nj | (33)

u j = −z(n−1) j − cnj z
′
nj +

n−1∑

k=1

∂α′
nj

∂xk j
x(k+1) j

+
n−1∑

k=1

∑

l∈N j

∂α′
nj

∂xkl
x(k+1)l − θ̂Tj φ j (x j )

− ε̂ j sat(znj ) (34)

α′
nj = −z(n−2) j − c(n−1) j z(n−1) j − ϕ j sign(z(n−1) j )

+
i−1∑

k=1

∂αi j

∂xk j
x(k+1) j +

i−1∑

k=1

∑

l∈N j

∂αi j

∂xkl
x(k+1)l

(35)

where κ1 j is a positive design parameters.

Theorem 2 Consider the multiple nonlinear systems
described by (1)–(2), when the Assumptions 2, 4 and
5 are satisfied, choose the control law (34) and the
adaptation laws (32)–(33) for system j, where 1 ≤
j ≤ m, then it guarantees that the objectives (3a), (3a)
for i = 2, . . . , n − 1 and |xnj | < ϕ j as t → ∞ hold.

Proof The proving procedures are the same as theo-
rem 1 in step 1∼ (n − 2).

In step (n − 1), αnj is redesigned as α′
nj in (35).

The Lyapunov function candidate Vn−1 is defined as
Vn−1 = Vn−2 + 1

2 z
T
(n−1)∗z(n−1)∗. Taking the time

derivative of Vn−1, we get

V̇n−1 = −zT1∗Lz1∗ −
n−2∑

j=2

zTj∗diag(c j∗)z j∗

+
m∑

j=1

z(n−2) j z(n−1) j

123



Distributed backstepping-based adaptive fuzzy control of multiple high-order nonlinear dynamics 71

+
m∑

j=1

z(n−1) j

[

−
n−2∑

k=1

∂α(n−1) j

∂xk j
x(k+1) j

+ znj + α′
nj −

n−2∑

k=1

∑

l∈N j

∂α(n−1) j

∂xkl
x(k+1)l

⎤

⎦

Substituting (35) into V̇n−1, we obtain

V̇n−1 = −zT1∗Lz1∗ −
n−1∑

j=2

zTj∗diag(c j∗)z j∗

+
m∑

j=1

z(n−1) j zn j −
m∑

j=1

ϕ j |z(n−1) j | (36)

In step n, we define theLyapunov function candidate
V ′
n as

V ′
n = Vn−1 + 1

2
z′Tn∗z′n∗ + 1

2

m∑

j=1

θ̃Tj Γ −1
j θ̃ j

+ 1

2

m∑

j=1

κ−1
1 j ε̃2j (37)

where z′n∗ = [z′n1, z′n2, . . . , z′nm]T , ε̃ j = ε j − ε̂ j .
Using the fact that |z′nj | = 0 for |znj | < ϕ j and |z′nj |
= z′nj sat(znj ) for |znj | ≥ ϕ j , ż′nj = żn j , and
Eqs. (32)–(34), it results in

V̇ ′
n = −zT1∗Lz1∗−

n−1∑

i=2

zTi∗diag(ci∗)zi∗−
m∑

j=1

ϕ j |z(n−1) j |

− z′Tn∗diag(cn∗)z′n∗ +
m∑

j=1

ϕ j z(n−1) j sat(znj )

+
m∑

j=1

z′nj [θ∗T
j φ j (x j ) − θ̂Tj φ j (x j ) − ε̂ j sat(znj )

+ ε j + ζ j ] +
m∑

j=1

θ̃Tj Γ −1
j

˙̃
θ j +

m∑

j=1

κ−1
1 j ε̃ j ˙̃ε j

≤ −zT1∗Lz1∗−
n−1∑

i=2

zTi∗diag(ci∗)zi∗−
m∑

j=1

ϕ j |z(n−1) j |

− z′Tn∗diag(cn∗)z′n∗ +
m∑

j=1

ϕ j |z(n−1) j |

+
m∑

j=1

z′nj θ̃Tj φ j (x j ) +
m∑

j=1

ε̃ j |z′nj |

+
m∑

j=1

θ̃Tj Γ −1
j

˙̃
θ j +

m∑

j=1

κ−1
1 j ε̃ j ˙̃ε j (38)

Substituting (32)–(33) into (38), it yields

V̇ ′
n ≤ −zT1∗Lz1∗ −

n−1∑

i=2

zTi∗diag(ci∗)zi∗

− z′Tn∗diag(cn∗)z′n∗ ≤ 0 (39)

Similar to theorem 1, from (39), it follows that
zi∗ ∈ L∞ for i = 1, . . . , n − 1, z′n∗ ∈ L∞, θ̃ j ∈ L∞,
ε̃ j ∈ L∞ and θ̂ j , ε̂ j are bounded according to the
boundedness of θ∗

j and ε̄ j . From (8), (9), (13), we
get x1 j , α2 j and x2 j are bounded, furthermore, α3 j is
bounded from (19), following this procedure, we claim
that u j is bounded. Using the above arguments, it fol-

lows that żi∗ for i = 1, . . . , n−1, ż′n∗,
˙̃
θ j and ˙̃ε j are all

bounded from (15), (18), (23), (36), (39) and the defin-
ition of φ j , Γ j and κ1 j . By differentiating (39), we can
see that V̈ ′

n is bounded, which means V̇ ′
n is uniformly

continuous. Hence, using Barbalat’s lemma [20], it fol-
lows that V̇ ′

n → 0 as t → ∞, i.e., lim
t→∞ zT1∗Lz1∗ = 0,

lim
t→∞ zl∗ = 0m for 2 ≤ l ≤ n − 1 and lim

t→∞ z′n∗ = 0m .

Following the analysis of Theorem 1, we can easily get
|x1 j − x1l | → 0 as t → ∞ for j, l = 1, . . . ,m, and
xi j → 0 as t → ∞ for i = 2, . . . , n − 1. Then we can
further get |xnj | < ϕ j as t → ∞ for i = 2, . . . , n − 1
using the fact that z′nj → 0 and α′

nj → 0 as t → ∞.
This completes the proof.

Remark 3 By considering the structure characteristics
of the system, the key idea of our proposedmethod is to
break a huge consensus problemwith themultiple high-
order nonlinear systems into a sequence of recursive
design problems with lower-order multiple subsystems
based on the backstepping frameworks. In each step of
the design procedure, only local information is used
to design the virtual controller, which makes it more
difficult to find the appropriate controllers, but conse-
quently the resulting actual controller and the parame-
ter adaptive lawcanbe obtained in a distributedmanner,
which overcomes the main drawbacks of the ordinary
backstepping methods in which global state informa-
tion must be used.

Remark 4 Aswe know, on the study of nonlinear func-
tion approximation, fuzzy control, and neural networks
have many similarities. These two technologies can
both approximate any real continuous functions on
a compact set. However, with respect the complex
n-order nonlinear systems whose unknown dynamics
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has valuable priori knowledge, especially, derived from
linearization and reduced-order approximation, fuzzy
control has important merits that it can fully utilize
the priori knowledge. The training of fuzzy control is
done by the commonsense rules library. In contrast, the
neural network control need to be trained, so it lead to
larger amount of calculation.

4 Simulation

In this section, due to the limitation of space, we only
give an example for Theorem 2 which is used to show
the effectiveness of the proposed distributed adaptive
fuzzy control law (34). Consider a five node undirected
graph described in Fig. 1. Note that the communication
graph G satisfies Assumption 2. For simplicity, the cor-
responding adjacent weights between the networked
systems are assumed to be 1, and all the others are 0.

Consider the following four-order uncertain nonlin-
ear dynamics:

ẋ1 j = x2 j

ẋ2 j = x3 j

ẋ3 j = x4 j

ẋ4 j = u j + f j (x1 j , x2 j , x3 j , x4 j ) + ζ j (t)

with

ẋ41 = u1 + 0.2(x11 + x41) + 0.3sin

(
t

5

)

+ 6cos(6t)

ẋ42 = u2 + (x12 + x22 − 1)2 + 0.3sin

(
t

5

)

+ 3sin(2t)

ẋ43 = u3 + 0.3cos(x13 + x23) + 0.3sin

(
t

5

)

+ 1

ẋ44 = u4 + 0.2sin(x14 + x24) + cos(3t) − sin(t) + 0.2

ẋ45 = u5 + 0.2sin(x15) + cos(2t)

The initial state information and the disturbances of
the systems are:

Fig. 1 Communication graph G of the multiple nonlinear sys-
tems

x1 j (0) = [1, 0.3, 1,−0.5]T , x2 j (0) = [−0.5, 1,
1,−1]T , x3 j (0) = [1.5,−1,−0.2, 3]T , x4 j (0) =
[−0.2,−1, 0.1, 1]T , x5 j (0)=[−1.75,−0.2, 0.1, 0.2].

Define fuzzy membership as follows:
μFl

4
(x1 j , x2 j , x3 j , x4 j ) = exp[−(x1 j − 3 + l)2/2] ×

exp[−(x2 j − 3 + l)2/2] × exp[−(x3 j − 3 + l)2/2] ×
exp[−(x4 j −3+ l)2/2], l = 1, . . . , 5. We obtain fuzzy
basis functions as follows:

φ4p(x1 j , x2 j , x3 j , x4 j )

=
exp

[
−(x1 j−3+p)2

2

]

× . . . × exp

[
−(x4 j−3+p)2

2

]

∑5
n=1 exp

[
−(x1 j−3+n)2

2

]

×. . . × exp

[
−(x4 j−3+n)2

2

]

where p = 1, . . . , 5.
The FLSs can be expressed in the following form:

f̂ j (x j |θ j ) = θ̂Tj φ j (x j ), where θ̂Tj =[θ̂1 j , θ̂2 j , θ̂3 j , θ̂4 j ,
θ̂5 j ], and φ j (x j ) = [φ1 j (x j ), φ2 j (x j ), φ3 j (x j ), φ4 j

(x j ), φ5 j (x j )].
with the initial state information:

θ̂1(0) = [0.01, 0.02, 0.01, 0.01, 0.01]T ,

θ̂2(0) = [0.1,−0.01, 0.02, 0.05, 0.02]T ,

θ̂3(0) = [0.3, 0.2,−0.3, 0.4, 0.3]T ,

θ̂4(0) = [−0.06, 0.03, 0.07, 0.1,−0.02]T ,

θ̂5(0) = [0.3, 0.2,−0.3, 0.4, 0.3]T .

ε̂1(0) = 7.1, ε̂2(0) = 6.1, ε̂3(0) = 6.1, ε̂4(0) = 6.1,
ε̂5(0) = 15.1, Γ1 = Γ2 = Γ3 = Γ4 = Γ5 = 5.2I ,
κ11 = κ12 = κ13 = κ14 = κ15 = 1, ci j = 1 for
i = 2, 3, 4, j = 1, . . . , 5. The thin boundary layer φ j

for j = 1, . . . , 5 neighboring the switching surface is
0.05.

Figure 2 shows the control torque of each agent by
the distributed control law in (31). Figures 3, 4, 5 and
6 shows the time histories of state trajectories for each
agent. From Fig. 3, it can be seen that, under the con-
trol torque which are shown in Fig. 2, the consensus
is achieved. These figures demonstrate the efficiency
of the proposed algorithm in guaranteeing consensus
despite the presence of complex unknown dynamics.
Therefore, the distributed consensus control laws in
Theorem 2 are effective.

5 Conclusion

This paper considered the cooperative consensus con-
trol problem of networked high-order nonlinear sys-
tems with distinct unknown dynamics and bounded
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Fig. 6 Response of x4 j for 1 ≤ j ≤ 5

external disturbances. The nonlinearities are only
assumed to be locally Lipschitz. Two adaptive fuzzy
control algorithms were proposed under the distributed
backstepping framework. The proposed algorithms are
completely distributed in the sense that the controller
for each agent only uses information of itself and its
neighbors. This backstepping control design is in fact
distributed over a communication network, which be
reflected in the virtual control and further be reflected
in the final adaptive fuzzy control algorithm.

There are relevant problems that need to be inves-
tigated. For example, the topologies for the practi-
cal multi-agent networks may change over time. Con-
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sensus problems for multi-agent systems with switch-
ing/directed topologies are more complicated because
the neighboring set of each agent is time varying.
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