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This paper presents a sensorless speed control strategy for a permanent-magnet synchronous motor (PMSM) based on an adaptive
nonlinear extended state observer (ANLESO). In this paper, an extended state observer (ESO), which takes back-EMF (back
electromotive force) as an extended state, is used to estimate the rotor position and the rotor speed because of its simpler structure
and higher accuracy. Both linear ESO (LESO) and nonlinear ESO (NLESO) are considered to estimate the back-EMF of PMSM,
and NLESO is finally implemented due to its obvious advantage in convergence. The convergence characteristics of the estimation
error of the observer are analyzed by the Lyapunov theory. In order to take both stability and steady-state error into consideration,
an adaptive NLESO is proposed, which adaptively adjusts the parameters of NLESO to a compromised value. The performance of
the proposed method was demonstrated by simulations and experiments.

1. Introduction

In recent years, permanent-magnet synchronousmotors have
increasingly gained lots of applications due to their high
efficiency, high dynamic response, and high torque to current
ratio [1, 2]. Compared to DC motors, PMSMs are superior
in robustness and overload capability and they do not need
mechanical commutation. As the fast switch components and
digital signal processors become economical, PMSMs are
widely used as an alternative for energy saving applications.
Besides, some countries have kept using low-cost induction
motors due to their simple structure and easiness in manu-
facturing. However, induction motors are less efficient than
PMSMs in terms of performance [3, 4].

PMSM drives require a position sensor with high reso-
lution to achieve an efficient vector control, such as a shaft
encoder or a resolver. Unfortunately, these sensors are expen-
sive and have a limited lifetime. Besides, the size of the motor
assembly will become larger. Therefore, many sensorless
control methods have been developed to eliminate these
mechanical sensors. In particular in some extreme envi-
ronments where position sensors may work abnormally,

sensorless control methods are more robust than those using
position sensors [4].

By means of injecting high frequency signal into motor,
the impedance difference caused by magnetic saturation,
which contains the information about the rotor position,
can be calculated [5]. However, injecting high frequency
signal brings noise and torque ripples. Because of good
standstill performance, the method is usually used within
low-speed range [6, 7].The extended Kalman filter (EKF) was
also employed for rotor speed and position estimation due
to its good dynamic performance and strong antijamming
capability [8]. Algorithm complexity and large calculating
quantity are disadvantages of EKF, which limits its practical
application.Neural network technology has a good advantage
in terms of parameter identification and it has been used
in sensorless control system by many scholars [9]. In these
papers, the rotor position is identified online by neural
network. However, the method needs a long computation
time and brings great burden on the digital signal processing,
which gives rise to choke points in applications. Zhang and
Li proposed the model reference adaptive scheme (MRAS)
to implement a sensorless control system. The idea of MRAS
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is to build a reference model of the PMSM system without
containing unknown parameters and to obtain the difference
between the reference model outputs and actual system
outputs. Next, an appropriate adaptive lawwill be designed to
adjust parameters of referencemodel in real time according to
the difference [10]. But the accuracy of this method depends
on the designed reference model, which may prohibit the
convergence of the system. Moreover, in [11, 12], the flux
linkage is used as state variable and is estimated directly. Some
authors used a slidingmode observer (SMO) approach [6, 13–
16]. The structure of SMO is simple and convenient to be
used in practical applications. Unfortunately, the estimation
accuracy of SMO would be affected by chattering.

The extended state observer (ESO) first proposed by
Huang andHan in [17] is the key step of the active disturbance
rejection control (ADRC) that is taking off as a technology
after numerous successful applications in engineering. ESO
has simple structure and it is able to estimate unmodeled
dynamics accurately in many cases. In terms of ADRC, a
class of nonlinear ESOs is designed to estimate the sum of
both the states and external disturbances [18]. After that,
Gao proposed a class of linear ESOs (LESO) and provided
guidance on how to choose the optimal parameters in the
controller design. In this way, the number of parameters to
be configured is reduced [19]. At present, ESO is mainly used
in control system to estimate disturbances and to compensate
them via a feed-forward cancellation technique [20–22].
Besides, ESO can be extended to multi-input–multi-output
systems as well [22].

In this paper, a sensorless speed control scheme for a
PMSM based on an ANLESO is proposed. ESO is applied
to estimate the rotor position and rotor speed of PMSM for
the first time. The information of the rotor position and the
rotor speed of PMSM can be calculated by estimating the
back-EMF. For this reason, the estimation accuracy of back-
EMF affects the accuracy of the position and speed directly.
ESOusually treats all the external disturbances and/or system
uncertainties as the “total disturbance” and extends it as an
additional state variable [16]. Therefore, system states and
unknown parts of system can be estimated by ESO in the
meantime without knowing the model of the unknown parts
(the derivative of the unknown parts). In this scheme, back-
EMF is the unknown part of the system and it would be
treated as an additional state variable to be estimated. Back-
EMF contains the information of the rotor position and speed
that cannot be obtainedwithout sensor. For this reason, back-
EMF cannot be modeled directly. As mentioned previously,
ESOwould treat back-EMF as “disturbance” and estimate the
back-EMF accurately without knowing its model. By means
of Lyapunov stability analysis, an adaptive control scheme is
adopted to balance stability and steady-state error. The adap-
tive control scheme could adaptively adjust the parameters
of ESO to a compromised value, and the steady-state error
will converge to a minimum on the premise of system stable.
Compared to other sensorless controlmethods, ANLESOhas
simpler structure, smaller chattering, and higher accuracy.

The state equations of the stator current in a stator-fixed
reference frame and the back-EMF for each phase in the fixed
frame of the PMSM are discussed in Section 2. In Section 3,

an adaptive nonlinear extended state observer for the sen-
sorless control scheme is designed and discussed. Section 4
gives the simulation results and Experimental results. Finally,
conclusions and suggestions for future improvements are
given in Section 5.

2. Mathematical Model

The voltages in the three phases can be transformed into the
synchronous coordinates in the two phases for vector control.
The state equations of the stator current, written in a stator-
fixed reference frame (𝛼𝛽), take the following form [23]:

𝑑𝑖
𝛼

𝑑𝑡
= −

𝑅

𝐿
𝑖
𝛼
−

1

𝐿
𝑒
𝛼
+

1

𝐿
𝑉
𝛼
, (1)

𝑑𝑖
𝛽

𝑑𝑡
= −

𝑅

𝐿
𝑖
𝛽
−

1

𝐿
𝑒
𝛽
+

1

𝐿
𝑉
𝛽
, (2)

where 𝑖
𝛼,𝛽

, 𝑒
𝛼,𝛽

, and 𝑉
𝛼,𝛽

represent the current, electromotive
force, and voltage for each phase, respectively. 𝑅 and 𝐿

represent the stator resistance and inductance, respectively.
The back EMF for each phase can be represented in the

fixed frame as
𝑒
𝛼
= − 𝐾

𝐸
𝜔
𝑟
sin 𝜃,

𝑒
𝛽
= 𝐾
𝐸
𝜔
𝑟
cos 𝜃,

(3)

where 𝐾
𝐸
, 𝜔
𝑟
, and 𝜃 represent the magnetic flux of the PM,

the electric angular velocity, and the rotor angle, respectively.

3. Proposed Adaptive Nonlinear ESO

In the sensorless control system, the back-EMF 𝑒
𝛼
, 𝑒
𝛽
are

usually figured out by the information of control signals 𝑉
𝛼
,

𝑉
𝛽
and output currents 𝑖

𝛼
, 𝑖
𝛽
. In other words, from the system

formulated by (1) and (2), 𝑒
𝛼
and 𝑒

𝛽
can be treated as the

unknown parts of the system. Thus, the back-EMF would
be extended as additional state variables. In this section,
linear ESO and nonlinear ESO are described, respectively. For
LESO, the bounded-input bounded-output (BIBO) stability
can be reached. For NLESO, a Lyapunov stability analysis
is shown. At last, an adaptive control scheme is designed in
order to improve the estimated accuracy.

The block diagram of the sensorless control system for
PMSM is shown in Figure 1. The space vector pulse width
modulation (SVPWM) algorithm is used as modulation
strategy to generate a sinusoidal current of the stator. To
control the PMSM, the three-phase coordinates need to
be transformed into 𝑑𝑞 synchronous coordinates by Clarke
transformation and Park transformation. An ADC (analog to
digital converter) module is used to detect phase current and
bus voltage. The proportional-integral (PI) control is used
in speed loop and current loop. All the sensorless control
algorithms are simulated by MatLab and executed on a DSP
chip.

3.1. Linear ESO. Note that this system is symmetric, and we
only need to design an observer to estimate 𝑒

𝛼
(the structure



Mathematical Problems in Engineering 3

3-phase
inverter

PWM
HW

PMSM
motor

PWM1A/B

PWM2A/B
PWM3A/B

SVGEN

Park Clake

PIPI
Spd

Phase 
voltage

ADC
HW

BusVolt

Adaptive 
nonlinear 

ESO

Estimated
position 

and speed

PIRef

Ref
Fdb

FdbFdb
Ref

Speed

V𝛼

V𝛼

V𝛽

V𝛽

I𝛼
I𝛽

𝜃

I_park

Vdc

Ia

Ib
Ic

Ta
Tb
Tc

Id

Iq

Ds

Qs

As

Bs

Figure 1: Block diagram of the sensorless vector control of PMSM.

and parameters of the observer). In this way, the order of the
observer can be reduced.

Set 𝑥
1

= 𝑖
𝛼
and 𝑥

2
= −𝑒
𝛼
as augmented states. ℎ is the

derivative of 𝑥
2
, which is a variable that we do not need to

know. The state equation (1) is written in the following form:

𝑥̇
1
= −

𝑅

𝐿
𝑥
1
+

1

𝐿
𝑥
2
+

1

𝐿
𝑢
1
,

𝑥̇
2
= ℎ.

(4)

The output can be written as

𝑦 = 𝑀[
𝑥
1

𝑥
2

] , (5)

where𝑀 = [1 0].
Now 𝑥

2
= −𝑒
𝛼
can be estimated using a linear extended

state observer as follows:

[
𝑧̇
1

𝑧̇
2

] = [

[

−
𝑅

𝐿

1

𝐿
0 0

]

]

[
𝑧
1

𝑧
2

] + [

[

1

𝐿
0

]

]

𝑢 + 𝐺 (𝑦 − 𝑧
1
) , (6)

where 𝑧
1
and 𝑧
2
are used to estimate the value of 𝑥

1
and 𝑥

2
,

respectively. 𝐺 = [−𝛽
1

− 𝛽
2
]
𝑇 is the observer gain vector,

which can be obtained using any knownmethod, for example,
the pole placement technique.

Let 𝑒 = [
𝑥
1
−𝑧
1

𝑥
2
−𝑧
2
]; then the error equation can be written as

̇𝑒 = (𝐴
𝑜
− 𝐺𝑀) 𝑒 + 𝐻, (7)

where

𝐴
𝑜
= [

[

−
𝑅

𝐿

1

𝐿
0 0

]

]

, 𝐻 = [0 ℎ]
𝑇

. (8)

Obviously, the LESO is bounded-input bounded-output
(BIBO) stable if (𝐴

𝑜
− 𝐺𝐶) is stable and ℎ is bounded [19].

3.2. Nonlinear ESO. For the sake of reducing the steady-state
error, a nonlinear extended state observer is proposed as
follows:

[
𝑧̇
1

𝑧̇
2

] = [

[

−
𝑅

𝐿

1

𝐿
0 0

]

]

[
𝑧
1

𝑧
2

] + [

[

1

𝐿
0

]

]

𝑢

+ [
−𝛽
1
⋅ 𝑒
1

−𝛽
2
⋅
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
1/2

⋅ sign (𝑒
1
)
] .

(9)

Let 𝑒 = [
𝑥
1
−𝑧
1

𝑥
2
−𝑧
2
]; then the error equation can be written as

̇𝑒
1
= − (

𝑅

𝐿
+ 𝛽
1
) 𝑒
1
+

1

𝐿
𝑒
2
,

̇𝑒
2
= − ℎ − 𝛽

2

󵄨󵄨󵄨󵄨𝑒1
󵄨󵄨󵄨󵄨
1/2 sign (𝑒

1
) .

(10)

When the steady state is reached, we can obtain

− ℎ − 𝛽
2

󵄨󵄨󵄨󵄨𝑒1
󵄨󵄨󵄨󵄨
1/2 sign (𝑒

1
)

= − (
𝑅

𝐿
+ 𝛽
1
) 𝑒
1
+

1

𝐿
𝑒
2
= 0.

(11)

Hence, the steady-state errors are

𝑒
1
= (

ℎ

𝛽
2

)

2

, (12)

𝑒
2
= (𝑅 + 𝐿𝛽

1
) (

ℎ

𝛽
2

)

2

. (13)

Theorem 1. For system (4), the state error of the nonlinear
extended state observer (9) converges asymptotically if the
following conditions are satisfied:

(C1) (𝑅/𝐿 + 𝛽
1
) > 0

(C2) 𝛽
2
> 0.
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Proof. The goal is to prove that there exists a positive definite
energy function whose derivative is always made negative.
The following energy function is chosen [24]:

𝑉 (𝑒
1
, 𝑒
2
)

= 𝐴
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
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− 𝐵𝑒
1
𝑒
2
+ 𝐶𝑒
2

2
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2
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𝐵
2 󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨

4𝐴2
𝑒
2

2

]

]

+ 𝐶𝑒
2

2
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−1/2

(𝑒
1
−

𝐵
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
1/2

2𝐴
𝑒
2
)

2

+ (𝐶 −
𝐵2

󵄨󵄨󵄨󵄨𝑒1
󵄨󵄨󵄨󵄨
1/2

4𝐴
) 𝑒
2

2
,

(14)

where 𝐴, 𝐵, and 𝐶 are the parameters to be determined.
Suitable 𝐴, 𝐵, and 𝐶 need to be chosen to let the energy
function meet the Lyapunov stability theorem.

In order to guarantee that 𝑉(𝑒
1
, 𝑒
2
) is positively definite,

the following rules need to be followed:

(R1) 𝐴 > 0

(R2) 𝐶 > 𝐵
2|𝑒
1
|1/2/4𝐴 > 0.

Since |𝑒
1
|1/2 is bounded, (R2) always can be satisfied by

choosing a suitable 𝐶.
Calculate the partial derivative of 𝑉(𝑒

1
, 𝑒
2
) as follows:

𝜕𝑉

𝜕𝑒
1

=
3

2
𝐴

󵄨󵄨󵄨󵄨𝑒1
󵄨󵄨󵄨󵄨
1/2 sign (𝑒

1
) − 𝐵𝑒

2
,

𝜕𝑉

𝜕𝑒
2

= − 𝐵𝑒
1
+ 2𝐶𝑒

2
.

(15)

The derivative of the energy function is as follows:

𝑉̇ =
𝜕𝑉

𝜕𝑒
1

̇𝑒
1
+

𝜕𝑉

𝜕𝑒
2

̇𝑒
2
. (16)

By substituting (15) into (16), 𝑉̇ can be given as

𝑉̇ = (
3

2
𝐴

󵄨󵄨󵄨󵄨𝑒1
󵄨󵄨󵄨󵄨
1/2 sign (𝑒

1
) − 𝐵𝑒

2
)(−(

𝑅

𝐿
+ 𝛽
1
) 𝑒
1
+

1

𝐿
𝑒
2
)

+ (−𝐵𝑒
1
+ 2𝐶𝑒

2
) (−ℎ − 𝛽

2

󵄨󵄨󵄨󵄨𝑒1
󵄨󵄨󵄨󵄨
1/2 sign (𝑒

1
)) .

(17)

From (17), the following expression can be deduced:

𝑉̇ = (
3

2

𝐴

𝐿
− 2𝐶𝛽

2
+ 𝐵(

𝑅

𝐿
+ 𝛽
1
)
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
1/2

)

⋅
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
−1/4 󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
3/4 sign (𝑒

1
) 𝑒
2

−
𝐵

𝐿
𝑒
2

2
− (

3

2
𝐴(

𝑅

𝐿
+ 𝛽
1
) − 𝐵𝛽

2
)
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
2(3/4)

+ (𝐵ℎ𝑒
1
− 2𝑐ℎ𝑒

2
) .

(18)

Assume that

𝑋 =
3

2
𝐴(

𝑅

𝐿
+ 𝛽
1
) − 𝐵𝛽

2
,

𝑌 = (
3

2

𝐴

𝐿
− 2𝐶𝛽

2
+ 𝐵(

𝑅

𝐿
+ 𝛽
1
)
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
1/2

)
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
−1/4

,

𝑍 =
𝐵

𝐿
.

(19)

Equation (18) can be rewritten as

𝑉̇ = − 𝑋
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
2(3/4)

+ 𝑌
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
3/4 sign (𝑒

1
) 𝑒
2

− 𝑍𝑒
2

2
− (−𝐵ℎ𝑒

1
+ 2𝐶ℎ𝑒

2
)

= 𝑉
1
− 𝑉
2
,

(20)

where𝑉
1
= −𝑋|𝑒

1
|2(3/4)+𝑌|𝑒

1
|3/4 sign(𝑒

1
)𝑒
2
−𝑍𝑒2
2
is a quadra-

tic function with regard to |𝑒
1
|3/4 sign(𝑒

1
) and 𝑒

2
. 𝑉
2

=

(−𝐵ℎ𝑒
1
+ 2𝐶ℎ𝑒

2
) is a plane function with regard to 𝑒

1
and 𝑒
2
.

A necessary and sufficient condition for the positively definite
property of the quadratic function 𝑉

1
can be obtained:

A 𝑋 > 0

B 𝑍 > 0

C 𝑌2 − 4𝑋𝑍 < 0.

FromA we have

(R3) (3/2)𝐴(𝑅/𝐿 + 𝛽
1
) > 𝐵𝛽

2
.

FromB we have

(R4) 𝐵/𝐿 > 0, which means 𝐵 > 0.

Then, fromC we can derive that

(
3

2

𝐴

𝐿
− 2𝐶𝛽

2
+ 𝐵(

𝑅

𝐿
+ 𝛽
1
)
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
1/2

)
2

󵄨󵄨󵄨󵄨𝑒1
󵄨󵄨󵄨󵄨
−1/2

< 4
𝐵

𝐿
(
3

2
𝐴(

𝑅

𝐿
+ 𝛽
1
) − 𝐵𝛽

2
) .

(21)

Then, the following expression can be obtained

(
3

2

𝐴

𝐿
− 2𝐶𝛽

2
+ 𝐵(

𝑅

𝐿
+ 𝛽
1
)
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
1/2

)

< 2√
𝐵

𝐿
(
3

2
𝐴(

𝑅

𝐿
+ 𝛽
1
) − 𝐵𝛽

2
)
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
1/4

.

(22)

Assume that

𝑎 = 𝐵(
𝑅

𝐿
+ 𝛽
1
) ,

𝑏 = √
𝐵

𝐿
(
3

2
𝐴(

𝑅

𝐿
+ 𝛽
1
) − 𝐵𝛽

2
),

𝑐 =
3

2

𝐴

𝐿
− 2𝐶𝛽

2
,

𝑥 =
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
1/4

.

(23)
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Equation (22) can be rewritten as

𝑐 + 𝑎𝑥
2

< 2𝑏𝑥. (24)

It can be verified that there exists some meaningful 𝑥

satisfying inequation (24) and meeting the rules (R1)∼(R4)
if and only if the following conditions are satisfied:

(
𝑅

𝐿
+ 𝛽
1
) > 0, 𝛽

2
> 0. (25)

Therefore, 𝑎 = 𝐵(𝑅/𝐿 + 𝛽
1
) > 0, and inequality (24)

denotes a parabola going upwards. Due to the existence of
some meaningful 𝑥 satisfying inequality (24), the vertex of
the parabola must be negative:

𝑏
2

− 𝑎𝑐 > 0. (26)

Hence,
𝐵

𝐿
(
3

2
𝐴(

𝑅

𝐿
+ 𝛽
1
) − 𝐵𝛽

2
) − 𝐵(

𝑅

𝐿
+ 𝛽
1
)(

3

2

𝐴

𝐿
− 2𝐶𝛽

2
) > 0

𝐵𝛽
2
(2𝐶(

𝑅

𝐿
+ 𝛽
1
) −

𝐵

𝐿
) > 0

2𝐶(
𝑅

𝐿
+ 𝛽
1
) >

𝐵

𝐿
.

(27)

Inequality (26) is established between the two real roots
𝑥 = (𝑏±√𝑏2 − 𝑎𝑐)/𝑎 of the quadratic equation 𝑎𝑥2−2𝑏𝑥+𝑐 =

0. In order to separate the two roots as far as possible and
make the smaller one very small, a very large 𝐵 needs to be
selected, which makes 𝐵𝛽

2
≫ 0, and the choice of parameter

𝐶 is required to ensure 2𝐶(𝑅/𝐿 + 𝛽
1
) − 𝐵/𝐿 > 0. Finally,

choose appropriate 𝐴 to make parameters 𝐵 and 𝐶 satisfy
rules (R1)∼(R4). In this way, 𝑉

1
will be a negative definite

function with variable 𝑒
1
in a very wide range and arbitrary

𝑒
2
. Meanwhile, the area in which 𝑉̇ = 𝑉

1
−𝑉
2
does not satisfy

negative conditions (the area 𝑉̇ > 0) is the part above the
intersecting line of the quadratic function 𝑉

1
and the plane

function 𝑉
2
.

The value of 𝑒
1
in the intersecting line is the same order

as 𝑒
1
= (𝐵ℎ/𝑋)

2 which is the root of the following equation:

𝐵ℎ𝑒
1
= 𝑋

󵄨󵄨󵄨󵄨𝑒1
󵄨󵄨󵄨󵄨
2(3/4)

. (28)

Since 𝑋 is the same order as 𝐵𝛽
2
, the value of 𝑒

1
in the

intersecting line is the same order as (ℎ/𝛽
2
)
2. Therefore, a

large enough 𝛽
2
can guarantee that 𝑒

1
is stable in a very wide

range.The larger 𝛽
2
we set, the smaller the unstable boundary

of 𝑒
1
, and then it will result in a better convergence.
In the same way, the value of 𝑒

2
in the intersecting line

is the same order as 𝑒
2

= (2𝐶ℎ/𝑍) which is the root of the
following equation:

2𝐶ℎ𝑒
2
= 𝑍𝑒
2

2
. (29)

Consider that 𝑍 = 𝐵, the value of 𝑒
1
in the intersecting

line is the same order as (2𝐶ℎ/𝐵). From inequality (21), the
inequality 2𝐶(𝑅 + 𝐿𝛽

1
)/𝐵 > 1 holds. Therefore, a large

enough (𝑅 + 𝐿𝛽
1
), by setting 𝛽

1
, can guarantee the existence

of appropriate 𝐵 and 𝐶 to make |𝑒
2
| = |(2𝐶ℎ/𝐵)| small

enough.

Yes

Yes

No

No

IF |e2| >
max(h)
R + L𝛽1

𝛽1 = 𝛽1 − ΔV ∗ 𝛼

𝛽out = 𝛽1
𝛽1 = 𝛽out 𝛽1 = 𝛽1 ∗ p

IF 𝛽1 − ΔV ∗ 𝛼 > 0

Figure 2: Flow chart of the algorithm to calculate 𝛽
1
.

Remark 1. Obviously, the state error would not actually go
to zero but enter, and is contained within, a neighborhood
of the origin by this method. Therefore, by means of setting
appropriate 𝛽

1
and 𝛽

2
, the performance required in practical

engineering can be achieved.

Remark 2. Using a sigmoid function as the nonlinear func-
tion in ESO can reduce chatting in the system [15]. Consider

[
𝑍̇
1

𝑍̇
2

] = [

[

−
𝑅

𝐿

1

𝐿
0 0

]

]

[
𝑍
1

𝑍
2

] + [

[

1

𝐿
0

]

]

𝑢

+ [
−𝛽
1
⋅ 𝑒
1

−𝛽
2
⋅
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨 ⋅ sigmoid (𝑒
1
)
] ,

(30)

where

sigmoid (𝑒
1
) = (

2

1 + exp (−𝑎𝑒
1
)
) − 1. (31)

3.3. Proposed Adaptive Nonlinear ESO. Although a large (𝑅+

𝐿𝛽
1
) will render 𝑒

2
stable in a wider range, the steady-state

error still has to be considered here. From (13) we know
that a large (𝑅 + 𝐿𝛽

1
) leads to the increase of 𝑒

2
in steady

state. The improved method proposed in this paper is to
adaptively adjust the parameters ofNLESO to a compromised
value which takes both stability and steady-state error into
consideration.

Rewrite inequality (27) as the following expression:

2𝐶

𝐵
>

1

𝑅 + 𝐿𝛽
1

. (32)

Thus, the roots of (29) hold the following equality:

󵄨󵄨󵄨󵄨𝑒2
󵄨󵄨󵄨󵄨 =

2𝐶 |ℎ|

𝐵
>

|ℎ|

𝑅 + 𝐿𝛽
1

. (33)
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Figure 3: Simulation waveforms of estimated back EMF when speed is 500 r/min and the load torque is 1 Nm: (a) obtained by the proposed
ANLESO and (b) obtained by the conventional SMO.
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Figure 4: Simulation waveforms of actual and estimated 𝑖
𝛼
, 𝑖
𝛽
when speed is 500 r/min and the load torque is 1 Nm. (a) Actual and estimated

𝑖
𝛼
obtained by the proposed ANLESO. (b) Actual and estimated 𝑖

𝛽
obtained by the proposed ANLESO. (c) Actual and estimated 𝑖

𝛼
obtained

by the conventional SMO. (d) Actual and estimated 𝑖
𝛽
obtained by the conventional SMO.

This means that the lower bound of 𝑒
2
is larger than

|ℎ|/(𝑅 + 𝐿𝛽
1
). 𝛽
1
is a design parameter, so the size of 𝑅 + 𝐿𝛽

1

can be changed by means of adjusting 𝛽
1
. The main idea of

this method is to decrease 𝛽
1
gradually to reduce steady-state

error and increase 𝛽
1
when the systemmay become unstable.

By several iterations, the value of 𝛽
1
would approximate the

compromised value gradually.

Figure 2 illustrates the algorithm to calculate 𝛽
1
, where

0 < 𝛼 < 1 and 𝑝 > 1 are adjustment factors. Δ𝑉 is the error
of command velocity and measured velocity.

3.4. Rotor Position and Speed Estimate. Using the estimated
back-EMF obtained by the ANLESO, the position and speed
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Figure 5: Simulation waveforms of actual and estimated speeds when speed is 500 r/min and the load torque is 1 Nm: (a) obtained by the
proposed ANLESO and (b) obtained by the conventional SMO.
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Figure 6: Simulation waveforms of actual rotor position, estimated rotor position, and estimated error when speed is 500 r/min and the load
torque is 1 Nm: (a) obtained by the proposed ANLESO and (b) obtained by the conventional SMO.

signals can be calculated easily. According to (3), the rotor
speed can be obtained as follows:

𝜔̂
𝑟
=

√(𝑒
𝛼

2 + 𝑒
𝛽

2)

𝐾
𝐸

. (34)

Similarly, the rotor position can be deduced from (3) as
follows:

𝜃 = − arctan[
𝑒
𝛼

𝑒
𝛽

] . (35)

4. Simulation and Experimental Results

4.1. Simulation Results. In order to show the high-speed
performance of the proposed ANLESO, it is necessary to
compare it with the conventional SMO through the Mat-
Lab/Simulink programming environment.The parameters of
PMSM used in simulation are listed in Table 1.

Figures 3–6 show the simulation waveforms when the
reference speed is changed from zero to 500 r/min and

Table 1: The parameters of PMSM.

Parameters Values
Rated power 1.5 KW
Rated speed 2500 r/min
Input voltage (DC) 310V
Current 6A
Stator resistance 1.18Ω

Stator inductance 53.26mH
Rotational inertia 1.33 × 10−3 kg⋅m2

Flux of permanent magnet 0.0356Wb
Poles 8

the load torque is 1 Nm. In these figures, part (a) gives the
simulation waveforms obtained by the proposed ANLESO
and part (b) gives the simulation waveforms obtained by
the conventional SMO. Estimated back-EMF, actual and
estimated phase currents, actual and estimated rotor speed,
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Figure 7: Simulation waveforms of estimated back EMF when speed is 2000 r/min and the load torque is 1 Nm: (a) obtained by the proposed
ANLESO and (b) obtained by the conventional SMO.
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Figure 8: Simulation waveforms of actual and estimated 𝑖
𝛼
, 𝑖
𝛽
when speed is 2000 r/min and the load torque is 1 Nm. (a) Actual and estimated

𝑖
𝛼
obtained by the proposed ANLESO. (b) Actual and estimated 𝑖

𝛽
obtained by the proposed ANLESO. (c) Actual and estimated 𝑖

𝛼
obtained

by the conventional SMO. (d) Actual and estimated 𝑖
𝛽
obtained by the conventional SMO.

and actual and estimated rotor position are also shown in
these figures.

As can be seen from Figures 3–6, the accuracy of esti-
mation has been greatly improved with the help of proposed
ANLESO. Different from the conventional SMO, the back-
EMF in Figure 3(a) almost has no chattering. Compared
with Figures 4(c) and 4(d), the estimated results of phase

currents in Figures 4(a) and 4(b) are better. Due to the good
performance of estimating back-EMF and currents, the
chattering phenomenon of the estimated rotor position and
speed is reduced, which can be seen from Figures 5(a), 5(b),
6(a), and 6(b). In part (a) of these figures, the estimated speed
is almost the same as actual speed; however, the estimated
speed in part (b) of these figures exhibits the chattering
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Figure 9: Simulation waveforms of actual and estimated speeds when speed is 2000 r/min and the load torque is 1 Nm: (a) obtained by the
proposed ANLESO and (b) obtained by the conventional SMO.
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Figure 10: Simulation waveforms of actual rotor position, estimated rotor position, and estimated error when speed is 2000 r/min and the
load torque is 1 Nm: (a) obtained by the proposed ANLESO and (b) obtained by the conventional SMO.

Figure 11: Platform of 1.5 kw PMSM sensorless control system based on DSP.

phenomenon. Besides, it can be seen that the estimated error
of the position in part (a) is smaller than that shown in part
(b) of these figures.

Figures 7–10 show the two sets of simulation waveforms
when the reference speed is changed from zero to 2000 r/min

and the load torque is 1 Nm. In these figures, part (a) gives the
simulation waveforms obtained by the proposed ANLESO
and part (b) gives the simulation waveforms obtained by
the conventional SMO. Estimated back-EMF, actual and
estimated phase currents, actual and estimated rotor speed,
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(a) (b)

Figure 12: Operating waveforms of estimated back EMF in steady state when speed is 500 r/min and the load torque is 1 Nm: (a) obtained by
the proposed ANLESO and (b) obtained by the conventional SMO.

(a) (b)

Figure 13: Operating waveforms of estimated 𝑖
𝛼
and 𝑖
𝛽
in steady state when speed is 500 r/min and the load torque is 1 Nm: (a) obtained by

the proposed ANLESO and (b) obtained by the conventional SMO.

(a) (b)

Figure 14: Operating waveforms of estimated rotor speeds when speed is 500 r/min and the load torque is 1 Nm: (a) obtained by the proposed
ANLESO and (b) obtained by the conventional SMO.

and actual and estimated rotor position are also shown in
these figures.

As can be seen from Figures 7–10, when the rotor speed
is raised to 2000 r/min, advantages of ANLESO becomemore
apparent than conventional SMO. Comparing the estimated
back-EMF in Figures 7(a) and 7(b), we can find that the
former has smaller chattering. As a result, the estimation
of rotor speed becomes more accurate by ANLESO, which
can be seen in Figures 9(a) and 9(b). The waveform forms
presented in Figures 10(a) and 10(b) show the estimated
rotor position. The position estimation error is reduced and
the accuracy of rotor position estimation is improved in
Figure 10(a).

4.2. Experimental Results. To further verify the performance
of the new SMO for estimating rotor position and speed, an

experimental systemhas been designed to control the 130SJT-
M060D (1.5 kw) sinusoidal PMSMmotor made by GSK.

Figure 11 shows a photograph of the sensorless control
system.TheHighVoltage DigitalMotor Control Kit, made by
TI, is utilized in the system, which contains power modules,
switching devices, current and voltage sensing circuit, ADC
modules, and PWM DAC (digital to analog converter)
modules. A floating-point TMS320F28335 DSP is employed
as the digital controller. The current control cycle is 100𝜇s
and the velocity control cycle is 1ms. A 2 𝜇s dead time is
chosen for the PWM switching. All of the control variables
are monitored in real time by an oscilloscope after they
are converted to analog signals through the PWM DACs
modules, which use an external low pass filter to generate
the waveforms.Themotor parameters used in experiment are
given in Table 1.
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Figure 15: Operating waveforms of rotor position and estimate error when speed is 500 r/min and the load torque is 1 Nm. (a) Actual and
estimated rotor position obtained by the proposed ANLESO. (b) Actual and estimated rotor position obtained by the conventional SMO. (c)
Estimated error obtained by the proposed ANLESO. (d) Estimated error obtained by the conventional SMO.

(a) (b)

Figure 16: Operating waveforms of estimated back EMF in steady state when speed is 2000 r/min and the load torque is 1 Nm: (a) obtained
by the proposed ANLESO and (b) obtained by the conventional SMO.

(a) (b)

Figure 17: Operating waveforms of estimated 𝑖
𝛼
and 𝑖
𝛽
in steady state when speed is 2000 r/min and the load torque is 1 Nm: (a) obtained by

the proposed ANLESO and (b) obtained by the conventional SMO.

Figures 12–14 show the operating waveforms when the
reference speed is changed from zero to 500 r/min and the
load torque is 1 Nm. In these figures, part (a) gives the
operating waveforms obtained by the proposed ANLESO
and part (b) gives the operating waveforms obtained by the
conventional SMO. Estimated back-EMF, estimated phase

currents, and estimated rotor speed are shown in these
figures. In Figure 15, actual rotor position, estimated rotor
position, and their error are shown.

Figures 12(a) and 13(a) show the experimental results
of the proposed ANLESO. Compared to the waveforms
obtained by SMO (see part (b) in Figures 12 and 13),
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(a) (b)

Figure 18: Operatingwaveforms of estimated rotor speedswhen speed is 2000 r/min and the load torque is 1 Nm: (a) obtained by the proposed
ANLESO and (b) obtained by the conventional SMO.
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Figure 19: Operating waveforms of rotor position and estimate error when speed is 2000 r/min and the load torque is 1 Nm. (a) Actual and
estimated rotor position obtained by the proposed ANLESO. (b) Actual and estimated rotor position obtained by the conventional SMO. (c)
Estimated error obtained by the proposed ANLESO. (d) Estimated error obtained by the conventional SMO.

thewaveforms of the estimated back-EMF and current shown
in Figures 12(a) and 13(a) are more accurate. The waveforms
presented in Figures 14(a) and 14(b) show the differences of
rotor speed estimated by two kinds of observers. The former
speed waveform has less chattering. In other words, ANLESO
has higher estimated precision.

Figure 15 shows the experimental results of position
response.The estimated error shown in Figure 15(c) is smaller
than that in Figure 15(d), which verifies the high precision of
ANLESO.

Figures 16–18 show the operating waveforms when the
reference speed is changed from zero to 2000 r/min and
the load torque is 1 Nm. In these figures, part (a) gives the
operating waveforms obtained by the proposed ANLESO
and part (b) gives the operating waveforms obtained by the
conventional SMO. In these figures, estimated back-EMF,
estimated phase currents, and estimated rotor speed are
shown. In Figure 19, actual rotor position, estimated rotor
position, and their error are shown.

Figures 12–15 show the operating waveforms when the
reference speed is changed from zero to 2000 r/min. Figures
12 and 13 provide the operating waveforms obtained by the
proposed ANLESO. Figures 14 and 15 show the simulation
waveforms obtained by the conventional SMO. In these
figures, estimated back-EMF, estimated phase currents, esti-
mated rotor speed, and actual and estimated rotor position
are shown.

Figures 16–18 show the experimental results of estimated
back-EMF, current and rotor speed when the rotor speed is
raised to 2000 r/min. It can be seen that the waveforms in
part (a) of these figures have smaller chattering and higher
accuracy. In this way, the advantages of ANLESO have been
verified.

As shown in Figure 19, when the rotor speed is raised
to 2000 r/min, the advantages of ANLESO to estimate rotor
position becomemore apparent than conventional SMO.The
estimation error in Figure 19(c) is significantly less than that
in Figure 19(d). That is to say, ANLESO has higher accuracy
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and smaller chattering when being applied to estimate posi-
tion than SMO.

5. Conclusions

In this paper, an adaptive nonlinear extended state observer
has been designed for the sensorless control of a PMSM.The
convergence of this observer has been proved by means of a
Lyapunov stability analysis. An adaptive algorithm is adopted
to calculate the compromised parameter of ESO in order to
take both stability and steady-state error into consideration.
Thegoodperformance of the proposed sensorless control sys-
tem was verified by several experimental results. The results
show that ANLESO has more advantages than conventional
SMO. Compared to conventional SMO, ANLESO has smaller
chattering, higher accuracy, and no phase delay.

In future works, we will explore the stability of the ESO
under parameter uncertainties in sensorless control system.
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