
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING
Int. J. Adapt. Control Signal Process. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/acs.2494

Multiple-model adaptive robust dynamic surface control with
estimator resetting

Minggang Gan, Jie Chen and Zhiping Li*,†

School of Automation, Beijing Institute of Technology, Beijing 100081, China

SUMMARY

A multiple-model adaptive robust dynamic surface control with estimator resetting is investigated for a class
of semi-strict feedback nonlinear systems in this paper. The transient performance is mainly considered. The
multiple models are composed of fixed models, one adaptive model, and one identification model that can be
obtained when the persistent exciting condition is satisfied. The transient performance of the final tracking
system can be improved significantly by designing proper switching mechanism during the parameter tuning
procedure. The semi-globally uniformly ultimately bounded stability of the closed-loop system can be easily
achieved because of the framework of adaptive robust dynamic surface control. Numerical examples are
provided to demonstrate the effectiveness of the proposed multiple-model controller. Copyright © 2014 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The main factors that deteriorate the performance of control system may be the unknown param-
eters, unmodeled system dynamics, and external disturbances. Yao viewed these uncertainties as
parametric and nonlinear uncertainties and proposed an adaptive robust control (ARC) framework,
to solve these uncertainties efficiently [1]. In this framework, the advantages of adaptive and robust
control are effectively combined, and the conflicts between these two control methods are dealt with
by using the projection operator in a parameter adaptation law. As long as the parameter estimates
stay in the prescribed set, the ARC can lead the system to a good performance because of its strong
robust. Thus, it is widely used and effective in many real engineering applications, especially in
servomechanisms [2–4].

However, in modern control engineering practices, accurate final tracking error with fast system
response may be more popularized. In the normal ARC approach, prescribed transient performance
will be realized by adjusting the robust control gain, and asymptotical convergence of tracking error
can be achieved with long learning procedure only in the presence of parametric uncertainties. That
is to say, better transient performance needs a higher control gain, which is very harmful to the
stability of the system at the initial time. More unfortunately, the higher control gain cannot do
any contribution to improving the asymptotical tracking performance because the adaptive control
term does not do any contribution to accelerating the convergence speed of the unknown param-
eters. In the framework of ARC, the parameter adaptation law is usually derived from Lyapunov
stability analysis to remove the crossed term. The transient performance was guaranteed by using
high control and learning gains. In [5, 6], a composite adaptation law was proposed to accelerate
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the adaptation speed. However, when the initial condition go against the parameter estimation, the
transient problem still exists.

In the past 20 years, to enhance the transient performance of the control system, Morse and
Narendra and Balakrishnan have proposed the multiple-model control concept in the adaptive con-
trol community for linear systems [7, 8]. It has been proved that the multiple-model adaptive control
is a well-established approach for implementing adaptive systems with fast transient response. In
[9], Narendra and Balakrishnan discussed different combination of multiple models including all
adaptive models, all fixed models, fixed models and one adaptive model, and fixed models with
one free-running and one reinitialized adaptive model. Subsequently, the multiple model approach
was expanded to nonlinear systems [10]. For example, adaptive control using multiple identifica-
tion models for a class of parametric strict feedback systems was investigated, where all adaptive
models combination was adopted [11]. In [12, 13], nonlinear adaptive backstepping using estima-
tor resetting based on multiple models was investigated, and a new switching and resetting criteria
were proposed by monitoring the negative jump in the control Lyapunov function. In [14–16], Ciliz
et al. did a lot of work in switching and resetting mechanisms and criteria for the multiple models
adaptive control of nonlinear systems.

In this paper, we focus on the transient performance of adaptive robust dynamic surface control
(ARDSC) for a class of semi-strict parametric feedback nonlinear systems. Multiple-model ARC
with switching, tuning, and estimator resetting is considered. However, the fixed models are difficult
to determine. Commonly, if more fixed models are selected, the accurate model will be approached
more probably. Nevertheless, larger computation cost will arise. To solve this problem, in our pre-
vious work [17], an identifier-based ARC of servomechanism was designed to improve the tracking
transient performance where only an identification model and an adaptive model are used. However,
the transient performance is only depended on the persistent exciting (PE) condition. To overcome
these problems, the multiple models, which consist of numbers of fixed models, an identification
model, and a reinitialized adaptive model, are introduced in this paper. The fixed models are used
as switching candidates to improve the system tracking transient performance till the identification
model is constructed. When the PE condition is satisfied, an accurate fixed model can be obtained,
which results in an easier determination of the fixed models. The reinitialized adaptive model occurs
according to a common criterion, which is similar to the ones in [13–15]. A modular adaptive design
philosophy will guarantee the stabilization of the closed-loop tracking system.

The remainder of this paper is organized as follows. In Section 2, problem formulation and prelim-
inaries are provided. In Section 3, multiple models ARDSC with parameter resetting is investigated
as the main results of this paper. System stability and performance analysis will be discussed in
Section 4. Simulation results are proposed to demonstrate the merits of the proposed method in
Section 5, and concluding remarks is placed in Section 6.

2. PROBLEM FORMULATION AND PRELIMINARIES

Multiple model ARDSC will be considered for the following semi-strict feedback nonlinear system.

Pxi D xiC1 C �
T
i .x1; � � � xi ; t / �1 C d1.x; t/ i D 1; � � � ; n � 1

Pxn D uC �Tn .x1; � � � ; xn; t / �n C dn.x; t/

y D x1

(1)

where x D Œx1; x2; � � � ; xn�
T is the state vector, y 2 R and u 2 R are the system output and

input respectively, �i 2 Rpi ; i D 1; � � � ; n represent the vectors of other unknown parameters, pi
is the dimension of �i ; di .x; t/ is uncertain nonlinearity in the i th channel, and �i .x1; � � � ; xi ; t / 2
Rpi ; i D 1; � � � ; n are known smooth functions. Our purpose is to drive the output of system (1) to
track the desired signal xd as closely as possible with reasonably good transient performance.
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To facilitate the control design, some necessary assumptions are given as follows.

Assumption 1
The extents of unknown parameter vectors are known, that is,

�i 2 �i D ¹�i 2 R
pi j�i min 6 �i 6 �i maxº ; (2)

where �i min; �i max; i D 1; � � � ; n are known constants.

Assumption 2
All the uncertain nonlinearities are bounded, that is, jdi .x; t/j 6 ıi ; i D 1; � � � ; n, where ıi are
some positive constants.

Assumption 3
The states of system (1) are available, and the desired trajectory vectors are contin-
uous and available, and Œxd ; Pxd ; Rxd �

T 2 �d with a known compact set �d D°
Œxd ; Pxd ; Rxd �

T W x2
d
C Px2

d
C Rx2

d
6 B0

±
� R3, whose size B0 is a known positive constant.

3. MULTIPLE MODEL ARDSC WITH PARAMETER RESETTING

3.1. Design of adaptive robust dynamic surface controllers

A multiple-model ARDSC with estimator resetting is proposed in this note (Figure 1). The dif-
ference from the normal ARDSC is that N fixed models and one identification model are ready
as switching candidates in the parameter adaptation. Thus, faster parameter convergence and more
accurate parameter estimates can be obtained, which will result in better transient performance of
the tracking system.

From our previous work [6], the adaptive robust dynamic surface controller of system (1) can be
given as follows.

u D ˛n D ��
T
n .x1; � � � ; xn/

O�n C Pxnf � kns´n � ´n�1 C ˛ns2 (3)

Figure 1. Diagram of control and parameter learning mechanism.
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The control law ˛n is recursively defined by

´1 D x1 � xd ; ´iC1 D xiC1 � x.iC1/f ; (4)

Px1f D Pxd ; �iC1 Px.iC1/fCx.iC1/f D ˛i � k.iC1/v�iC1 tanh

�
k.iC1/v�iC1yiC1

&iC1

�
;

x.iC1/f .0/ D ˛i .0/

(5)

˛i D ��
T
i .x1; � � � ; xi /

O�i C Pxif � kis´i � ´i�1 C ˛is2; (6)

where i D 1; � � � ; n � 1; ´0 D 0; O�i denotes the estimate of the unknown parameter by using
switching and resetting update mechanism, ki is the feedback control gain to stabilize the nominal
system, and kv.iC1/; �iC1 and &iC1 are some positive design parameters. ˛is2 represents robust
feedback to attenuate the effect of model uncertainties, which will be synthesized later.

The filter error is defined by

yiC1 D x.iC1/f � ˛i : (7)

Consequently, the error dynamics of the closed-loop system can be deduced as

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

Ṕ i D �
T
i . Nxi ; t /

Q�i C ´iC1 C yiC1 C di C ˛is2 � kis´i � ´i�1

Ṕn D �
T
n . Nxn; t /

Q�n C dn C ˛ns2 � kns´n � ´n�1

PyiC1 D �
yiC1
�iC1
� k.iC1/v tanh

�
k.iC1/vyiC1

�iC1

�
� P̨ i

i D 1; � � � ; n � 1

: (8)

where Q�i D �i � O�i represents the estimated error of the unknown parameter �i .

3.2. Determination of fixed models and identification model

From Assumption 1, we know every unknown parameter in �i has a fixed range, which is represented
as L�i;j D �i;j max � �i;j min; j D 1; 2; � � � ; pi . The simple way to determine the fixed models is
to distribute the models evenly over the parameter space. The fixed width L�i;j is split into m�i;j
equivalent parts. Then, we will have m�i;j C 1 fixed models for every parameter �i;j . Thus, the
number of the fixed models of the system is given by

N D

nY
iD1

piY
jD1

�
m�i;j C 1

�
(9)

Theoretically, as long as the separation of each parameter is sufficiently small, a fast transient per-
formance can be achieved because of the accurate parameter selection . However, the number of
fixed models and computation load will increase exponentially along with the number of separa-
tion part. In this subsection, we try to construct an identification model as a special candidate fixed
model to improve the transient performance with less number of fixed models. The following will
demonstrate the construction detail of the identification model.

System (1) can be rewritten as the following compact form.

Px D f T .x; t/� C g.x; u; t/C d.x; t/ (10)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2014)
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where

f T .x; t/ D

2
6664
'T1

'T2
: : :

'Tn

3
7775 ; g.x; u; t/ D

2
6664
x2
:::

xn
u

3
7775

d.x; t/ D

2
6664
d1
d2
:::

dn

3
7775 ; � D

�
�T1 ; �

T
2 ; � � � ; �

T
n

	T

Because Px in (10) is unmeasured, we first introduce the following filters:

P!0 D �k.t/ .!0 � x/C g.x; u; t/; (11)

P!T D �k.t/!T C f T .x; t/: (12)

where k.t/ D k0 C k1.t/; k0 > 0; k1.t/ > 0.
Defining

� D x � !0 � !
T �; (13)

it follows from (10), (11), and (12), and � can be generated from

P� D �k.t/� C d.x; t/: (14)

Let

P D

Z t

0

!.t/!T .t/dt ; P.0/ D P0;

Q D

Z t

0

!.t/ .x � !0 � �/ dt ;Q.0/ D Q0

; (15)

where P0;Q0 satisfy P�10 Q0 2 �� .

Definition 1 ([18] � degree of persistent excitation)
When the determinant of P is greater than � , that is, det.P / > � , where � is some small positive
constant to be designed, then we call � the degree of persistent excitation.

Remark: The degree � can be used to adjust the frequency of calculating the identification model.
Small � can lead to a relatively frequent update of the identified model and yield a larger compu-
tation load. While large � will discourage the identification mode from following the real mode
in time.

If the degree of persistent excitation condition is satisfied, the unknown parameter � will be
directly identified by

� D P�1Q; (16)

Noting Equation (14), the nonlinear uncertainty d.x; t/ is unknown. The signal � is generated by
the following dynamic equation in implementation:

P�0 D �k.t/�0; �0.0/ D x.0/ � !0.0/ � !
T .0/� (17)
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Then the identification model is actually given as

�I D P�1Q0 (18)

where Q0 D
R t
0!.t/ .x � !0 � �

0/ dt ;Q0.0/ D Q0.
Defining the parameter identification error Q�I D � � �I and considering (14), (16), (17),

and (18), we have

Q�I D P�1
Z t

0

!.t/ Q�.t/dt ; (19)

where Q� D � � �0 is the output of

PQ� D �k.t/ Q� C d.x; t/; Q�.0/ D 0: (20)

Remark 1
The identification model can approximate the real model more accurately by increasing the
gain k.t/. Moreover, if the nonlinear uncertainty di D 0, true parameter estimates can be calculated
by (16). Thus, when the identification model is constructed successfully, even though the distribu-
tion for fixed models determination in the compact set �� , to which the plant parameter � belongs,
is relatively sparse, a good fixed model distribution can also be obtained.

3.3. Design of switching and parameter adaptation mechanisms

Define

	j D x � !0 � !
T �j ; j D 1; � � � ; N;N C 1;N C 2; (21)

where �1; � � � ; �N represent the parameter vectors of fixed models, �NC1 D �I is the parameter
vector of identified model, and �NC2 denotes the estimated vector in the adaptive model, that is,
�NC2 D O� . Let ¹Miº

N
iD1 denote the N fixed models, MNC1 denote the identification model, and

MNC2 denote the adaptive model. A rational performance criterion for switching is chosen as

Jj .t/ D ˛	
T
j .t/	j .t/C ˇ

Z t

0

e��.t��/	Tj .
/	j .
/d
: (22)

Remark 2
The index function defined in (22) can measure the approximation degree for the true model of the
system. In general, the smallest value of Jj represents that the model j is closest to the real model.

Switching mechanism: At first, preselect a positive number Tmin and set Mc D M1. The initial
identification model is set as �I .0/ D P�10 Q0. Then at each time t > 0, fixed models ¹Miº

N
iD1,

previous identification model MNC1

�
�I
�
, and adaptive model MNC2 are the candidates to be

switched. SetMi� D arg min
iD1;��� ;NC2

¹Ji .t/º. If in the ensuring Tmin time interval, the i� does not change,

then Mc is switched to Mi� , and the parameter estimate vector is reset as O�.t/ D � i
�

.
If the PE condition is satisfied at time ti where i D 1; 2; � � � , let a persistent variable a be updated

by a D P�1Q0, and P .ti / ;Q0 .ti / are reset as P .ti / D 0;Q0 .ti / D 0. When the latest switching is
finished, that is, time interval Tmin is over, the parameter vector of identification model is updated by
�I D a. The process is then repeated. The switching mechanism in flowchart is shown in Figure 2.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2014)
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Figure 2. Switching mechanism in flowchart.

Remark 3
In the switching procedure, we know that the identification model (a special fixed model) can be
updated according to the PE condition to catch the actual model of the system. Even though possible
parameter jumps, the identification will still catch the real model as soon as possible. By using the
resetting method, most of history information can be cut off. Thus, more robust identification model
can be obtained, and the large value of partial elements in the persistent matrices can be avoided.

Parameter update mechanism: Suppose tk; k 2 ¹1; 2; � � � º is the kth switching time instance
when the parameter estimation is reset. The parameter update mechanism is given as follows.

8<
:
O�.t/ D � i

�

.t/;
PO�a.t/ D 0 t D tk; k D 1; 2; � � �

O�.t/ D O�a.t/;
PO�a.t/ D Proj .��/; t 2 .tk; tkC1/

: (23)

where � D diag .�1; � � � ; �n/, � D
�
´1�

T
1 . Nx1/ ; � � � ; ´n�

T
n . Nxn/

	T
,

Proj.��/ D
h
Proj O�1.�/; � � � ;Proj O�M .�/

iT
, M D

nP
iD1

pi ; � represents the j th element of vector

�� . The projection map has the following expression and properties.

Proj O�j .�/ D

8̂<
:̂
0 if �j D �jmax and � > 0

0 if �j D �jmin and � < 0

� otherwise

(24)

The footnote j 2 ¹1; 2; � � � ;M º denotes the j th element. jmin; jmax denote the minimum and max-
imum values of the j th element of � , respectively. It can be shown that for any adaptation function
� , the projection mapping guarantees

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2014)
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Property1 W O� 2 �� D
°
O� W �min 6 O� 6 �max

±
I (25)

Property2 W Q�T
�
� � ��1 Proj O� .��/

�
6 0; 8�: (26)

where �min D
�
�T1min

; � � � ; �Tnmin

	T
; �max D

�
�T1max

; � � � ; �Tnmax

	T
.

4. PERFORMANCE ANALYSIS OF THE CLOSED-LOOP SYSTEM

From the construction of fixed models and identification model described in the aforementioned
subsection, we explicitly have

Q�.t/ 2 �� ; t > 0: (27)

where the parameter estimation error is bounded by



 Q�


 6 k�max � �mink. As a result, the robust

term ˛is2 in the designed controller (6) can be selected as

˛is2 D hi tanh

�
hi´i

"i

�
; (28)

where hi satisfies

hi > sup
�i2��i

ˇ̌̌
�Ti . Nxi ; t /

Q�i C di .x; t/
ˇ̌̌
: (29)

Then, we have

´i

�
�Ti . Nxi ; t /

Q�i C di .x; t/C ˛is2

�
6 0:2785"i : (30)

Theorem 1
Consider the nonlinear system given in (1) with parametric and nonlinear uncertainties. Given any

positive constant p, for all the initial condition of the closed-loop system satisfying
nP
iD1

´2
i
.0/ C

n�1P
iD1

y2
iC1
.0/ 6 p, the initial estimates of the unknown parameters being selected such that O�i .0/ 2

�i and the controller being given by (3), there exist control parameters ki ; �iC1; k.iC1/v such that the
closed-loop system (8) is semi-globally uniformly ultimately bounded stable under any parameter
update law, which can make the parameter estimates stay in the compact set �� .

Proof
Define a positive definite function Vs as

Vs D
1

2

nX
iD1

´2i C
1

2

n�1X
iD1

y2iC1: (31)

Differentiating function Vs with respect to time t , one has

PVs D

n�1X
iD1

°
´i

�
'Ti . Nxi ; t /

Q�i C ´iC1 C yiC1 C di C ˛is2 � kis´i � ´i�1

�±

C ´n

�
'Tn . Nxn; t /

Q�n C dn C ˛ns2 � kns´n � ´n�1

�

C

n�1X
iD1

´
�
y2iC1

�iC1
� k.iC1/vyiC1 tanh

�
k.iC1/vyiC1

�iC1

�
� yiC1 P̨ i

μ (32)
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The right hand of Equation (32) can be simplified as

PVs D

nX
iD1

°
´i

�
'Ti . Nxi ; t /

Q�i C di C ˛is2

±
�

nX
iD1

kis´
2
i C

n�1X
iD1

´iyiC1

C

n�1X
iD1

´
�
y2iC1

�iC1
� k.iC1/vyiC1 tanh

�
k.iC1/vyiC1

�iC1

�
� yiC1 P̨ i

μ (33)

No matter what the parameter update law is adopted, if the parameter estimate O�.t/ does not escape
from the range of �� , the inequality (30) can hold. Using the facts

´iyiC1 6 ´2i C
1

4
y2iC1

�yiC1 P̨ i 6 j P̨ i j jyiC1j ;

one has

PVs 6 0:2785
nX
iD1

"i �

n�1X
iD1

²
.kis � 1/ ´

2
i C

�
1

�iC1
�
1

4

�
y2iC1

³
� kns´

2
n

C

n�1X
iD1

²
j P̨ i j jyiC1j � k.iC1/vyiC1 tanh

�
k.iC1/vyiC1

�iC1

�³ (34)

If the control parameters ki ; �iC1; k.iC1/v satisfy8̂<
:̂
kis > 
 C 1; kns > 

1

�iC1
> 
 C 1

4
; k.iC1/v >Mi

i D 1; 2; � � � ; n � 1

; (35)

where Mi is the bound of j P̨ j and noting the following established inequality

j P̨ i j jyiC1j � k.iC1/vyiC1sign .yiC1/ 6 0; (36)

ˇ̌
k.iC1/vyiC1

ˇ̌
� k.iC1/vyiC1 tanh

�
k.iC1/vyiC1

�iC1

�
6 0:2785�iC1; (37)

then, we have

PVs 6 �2
Vs C �: (38)

which leads to the following inequality

0 6 Vs.t/ 6 exp.�2
t/Vs.0/C
�

2

Œ1 � exp.�2
t/�; (39)

where

� D 0:2785

 
nX
iD1

"i C

n�1X
iD1

�iC1

!
: (40)

Thus, we conclude that the close-loop system (8) is uniformly ultimately bounded stable. Because
the bound of j P̨ j is required during the proof procedure, only semi-globally stability is achieved. �
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Remark 4
Theorem 1 indicates that as long as the parameter update law can make the parameter estimates
stay in the compact set �� , the tracking system is stable, which means the design of the parameter
adaptation mechanism is separated from the controller design. Thus, the gradient update law derived
from Lyapunov stability analysis in the normal ARC is not the only choice. Better parameter con-
vergence will be available through using some advanced learning mechanisms (e.g., least square
method, multiple identifiers, and estimator resetting methods) as long as the bound of parameter
error Q� can be guaranteed.

Proposition 1
If the parameter update law is chosen as (23), better transient performance can be obtained, and
more accurate tracking of the system can be obtained when the PE condition is satisfied comparing
with that using the normal adaptive robust dynamic surface control.

Proof
The following inequality can be deduced by invoking the inequality (30):

PVs 6 ZT Q�T f .x; t/CZTD1 CZT us2 � 
 kZk2 � 
 kY k2 C �1

6 �.
 � 1/ kZk2 � 
 kY k2 �
nX
iD1

hi j´i j C



 Q�T 


 

ZT f .x; t/

C 1

4
kD1k

2 C �
(41)

where Z D Œ´1; ´2; � � � ; ´n�
T � Rn; Y D Œy2; � � � ; yn�

T � Rn�1, D1 D Œd1; � � � ; dn�
T , us2 D

Œu1s2; � � � ; uns2�
T , �1 D 0:2785

n�1P
iD1

�iC1.

From (41), we know that in order to obtain better tracking performance, the positive term
1
4
kD1k

2C



 Q�T 


 

ZT f .x; t/

C� should decreased quickly. In the proposed method, the param-

eter update law is chosen as (23). The switching criterion defined in (22) is dependent on which
model is closer to the real model. Thus, when the switching occurs, Q� obviously approaches zero
faster than Q�a in the normal ARC. Subsequently, the derivative of Vs will have more negative value
that produces faster tracking convergence. Moreover, if the identification model is obtained, more
accurate parameter estimates will be obtained, and this results in a decrease in the tracking error. �

5. EXAMPLES

Consider the following nonlinear system in semi-strict feedback form:

Px1 D x2 C �
T
1 �1.x1/C d1.x; t/

Px2 D uC �T2 �2.x1; x2/C d2.x; t/

y D x1

(42)

where �1 D Œ0:5; 2�T , �2 D Œ1:2; 1�T , �1.x1/ D
�
x21 ; sin .x1/

	T
, �2.x1; x2/ D Œx1 sin .x2/ ; x2�

T ;

d1.x; t/ D 0:1 sin.10�t/; d2.x; t/ D 0:2f .x1/ and where f .x1/ D

8<
:
0; x1 < 0;

x1; 0 6 x1 6 1;
1; x1 > 1:

.The

extents of the unknown parameters are supposed as �11 2 .0; 2/, �12 2 .0; 5/, �21 2 .0; 4/,
�22 2 .0; 3/. Every parameter extent is divided into four equal parts, and we take the cut-point
as a fixed model. For example, divide the parameter �11 into four equal parts with the cut-points
1,0.5,1.5. Thus, for every parameter, the fixed models are determined as �11 D ¹0:5; 1; 1:5º,
�12 D ¹1:25; 2:5; 3:75º, �21 D ¹1; 2; 3º, �22 D ¹0:75; 1:5; 2:25º. So the
total number of fixed models is 3 � 3 � 3 � 3 D 81. The initial values of the parameter and
state estimates are set as zero. The initial states are supposed as x1.0/ D 0; x2.0/ D 0.
The control parameters are chosen as k1 D 2; k2 D 5; �2 D 0:2; k2v D 10; &2 D 0:001,
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Figure 3. Tracking trajectories and errors of adaptive robust dynamic surface control (ARDSC) and multiple-
model ARDSC.
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Figure 4. Parameter estimates.

h1 D 20; h2 D 40, "1 D "2 D 10. Adaptation gain matrix is given by � D 80 � diag
.1500; 100; 100; 7/. The the degree � D 10�8 and � D 2, 
 D 0:5, Tmin D 50ms. The desired
trajectory is chosen as xd .t/ D 0:2sin.2�t/. We consider the following cases to demonstrate the
effectiveness of multiple-model ARDSC.

Case 1: ARDSC and multiple-model ARDSC without the identifier model
In Figure 3, the steady tracking errors are both well, while the transient performance of

multiple-model ARDSC is much better. Figure 4 shows that using the multiple-model approach
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brings better parameter estimation performance (transient performance and final estimation
accuracy). In Figure 5, it definitely shows that at the initial system operation, the switching action
is effective, and there is no switching action after about 1 s. Thus, after about 1 s, only the
adaptive model is effective.
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Figure 5. Switching state in Case 1.
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Figure 6. Output tracking errors in Case 2.
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Figure 7. Parameter estimates in Case 2.
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Figure 8. Switching state in Case 2.
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Figure 9. Output tracking errors in Case 3.

0 2 4 6 8 10
0

0.5

1

1.5

2

time(s)
0 2 4 6 8 10

0

1

2

3

4

time(s)

0 2 4 6 8 10
0

1

2

3

4

time(s)
0 2 4 6 8 10

0

0.5

1

1.5

2

time(s)

ARDSC
Multiple−model ARDSC with identifier
real value

E
st

. o
f θ

12
E

st
. o

f θ
22

E
st

. o
f θ

11
E

st
. o

f θ
21

Figure 10. Parameter estimates in Case 3.
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Figure 11. Switching state in Case 3.

Case 2: ARDSC and multiple-model ARDSC with the identifier model and the fixed model
being halved

Figure 6 shows that even the number of fixed models is halved, the tracking error of multiple-
model ARDSC converges to a small value with better transient performance. The parameter
estimates jump to the actual values when the identifier model is obtained. As shown in Figure 7,
the estimate is switched to the identifier model at about 2 s. Comparing with Figures 8 and 6, the
switching is more frequent in Case 2.

Case 3: ARDSC and multiple-model ARDSC considering jump parameters
Suppose that the unknown parameters in system (42) jumps as follows:

�.t/ D

8<
:
Œ0:5; 2; 1:2; 1�T ; t 6 2;
Œ0:5; 3; 1:2; 1�T ; 2 < t 6 5;
Œ0:5; 3; 2; 1:5�T ; t > 5

In Figure 9, multiple-model ARDSC shows better transient performance and steady state accu-
racy than those of ARDSC. Figure 10 implies that owing to employing the identifier model, the
parameter estimates can catch the actual values even there exists a parameter jumping in the
system operation. Figure 11 shows the switching profile.

6. CONCLUSIONS

A multiple-model ARC has been investigated in this paper. It is different from the traditional
multiple-model adaptive controller because an identification model was employed as a special fixed
model. Thus, when the PE condition is satisfied, the accurate model can be obtained, and better
transient performance of the parameter estimates would be obtained with relatively few number of
fixed models. The advancement of the proposed method is demonstrated by the simulation results.
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