中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校百佳科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碳质球粒陨石的小行星水蚀变光谱学研究

余金霏,赵海斌,吴昀昭

余金霏, 赵海斌, 吴昀昭. 基于碳质球粒陨石的小行星水蚀变光谱学研究[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20220077
引用本文: 余金霏, 赵海斌, 吴昀昭. 基于碳质球粒陨石的小行星水蚀变光谱学研究[J]. 深空探测学报(中英文).doi:10.15982/j.issn.2096-9287.2022.20220077
YU Jinfei, ZHAO Haibin, WU Yunzhao. Spectroscopic Study of Aqueous Alteration of Asteroids Based on Carbonaceous Chondrites[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20220077
Citation: YU Jinfei, ZHAO Haibin, WU Yunzhao. Spectroscopic Study of Aqueous Alteration of Asteroids Based on Carbonaceous Chondrites[J].Journal of Deep Space Exploration.doi:10.15982/j.issn.2096-9287.2022.20220077

基于碳质球粒陨石的小行星水蚀变光谱学研究

doi:10.15982/j.issn.2096-9287.2022.20220077
基金项目:中国科学院先导B资助项目(XDB41010104);国家自然科学基金资助项目(12150009、11633009);空间碎片与近地小行星防御科研资助项目(KJSP2020020205,KJSP2020020204,KJSP2020020102,KJSP2020020101);小行星基金会资助项目
详细信息
    作者简介:

    余金霏(1997− ),男,硕士研究生,主要研究方向:碳质小行星与碳质球粒陨石。通讯地址:江苏省南京市栖霞区元化路10号,中国科学院紫金山天文台(210023)电话:15912550661E-mail:yjf1918@mail.ustc.edu.cn

    赵海斌(1975− ),男,研究员,博士生导师,主要研究方向:太阳系天体观测研究。本文通讯作者。通讯地址:江苏省南京市栖霞区元化路10号,中国科学院紫金山天文台(210023)电话:15312042848E-mail:meteorzh@pmo.ac.cn

  • • Analysis of the NIR-MIR spectral variation laws of aqueous alteration. • A series of carbonaceous chondrites reflecting the sequence of the degree of aqueous alteration were selected for spectroscopic study. • Revealed the connection between spectral features variations and petrological characteristics.
  • 中图分类号:V

Spectroscopic Study of Aqueous Alteration of Asteroids Based on Carbonaceous Chondrites

  • 摘要:针对未来对富挥发份小行星的遥感探测需求,开展了对碳质球粒陨石水蚀变的光谱学研究。分析了15个不同蚀变程度的碳质球粒陨石的1~20 μm红外光谱特征与岩石学性质,总结了水蚀变过程的光谱变异规律。结果表明:随着蚀变程度加深,指示层状硅酸盐与水分子的3 μm吸收带与仅指示水分子的6 μm吸收带的强度均加深,吸收中心均向短波方向移动。碳质球粒陨石的3 μm吸收带随蚀变程度增加而变得尖锐,吸收带光谱形态与蛇纹石类矿物的3 μm吸收特征类似,而6 μm吸收带形态随蚀变程度增加无明显变化。硅酸盐矿物在9~13 μm特征区的光谱形状也随蚀变程度增加而改变,12.4 μm/11.4 μm反射率比值减小,这是由于无水硅酸盐转化为层状硅酸盐。光谱变异规律未来可应用于小行星探测。
    Highlights
    • Analysis of the NIR-MIR spectral variation laws of aqueous alteration. • A series of carbonaceous chondrites reflecting the sequence of the degree of aqueous alteration were selected for spectroscopic study. • Revealed the connection between spectral features variations and petrological characteristics.
  • 图 1碳质球粒陨石在0.5~4.5 μm的反射光谱

    Fig. 1Reflectance spectra of carbonaceous chondrites in 0.5-4.5 μm

    图 2碳质球粒陨石在5~20 μm的反射光谱

    Fig. 2Reflectance spectra of Carbonaceous chondrites in 5-20 μm

    图 3碳质球粒陨石的3 μm吸收带的连续统去除光谱

    Fig. 3Continuum removal spectra of carbonaceous chondrites at 3 µm band

    图 43 μm吸收特征与蚀变程度的关系

    Fig. 4(A)The relationship between the 3 µm band center and 3 μm band depth of all carbonaceous chondrites

    图 5碳质球粒陨石6 μm吸收带的连续统去除光谱

    Fig. 5Continuum removal spectra of carbonaceous chondrites at 6 µm band

    图 66 μm带特征与蚀变程度的关系

    Fig. 6(left)The relationship between the 6µm band center and 6 μm band depth of all carbonaceous chondrites

    图 7CI1、CM1、CM2、CR2、C2与CO3陨石在9~14 μm的光谱

    Fig. 7The reflectance spectra of CI1, CM1, CM2, CR2, C2 and CO3 chondrites in the 9-14 μm

    图 8CI1、CM1、CM2、CR2、C2与CO3陨石在12.4 μm/11.4 μm反射率比值与岩石学类型的关系

    Fig. 8The relationship between the CI1, CM1, CM2, CR2, C2 and CO3 chondrites petrological type and 12.4 μm/11.4 μm reflectance ratio

    图 9CM2陨石中3 μm带中心位置与绿锥石在层状硅酸盐中占比的关系

    Fig. 9The relationship between the 3 μm band center and Fe-cronstedtite abundance in phyllosilicate in CM2 chondrites

    图 10小行星Ryugu、Bennu的3 μm特征与陨石的3 μm特征的对比

    Fig. 10Comparison of the 3 μm features of asteroids Ryugu and Bennu with carbonaceous chondrites

    表 1本研究所用碳质球粒陨石数据的信息

    Table 1Carbonaceous chondrite researched in this study

    陨石名称 陨石群与岩石学
    类型
    发现类型 光谱测量范围/
    μm
    2 μm处
    反射率
    Alais CI1 降落型 0.83~99.72 0.073 70
    Orgueil CI1 降落型 1.43~25.05 0.068 85
    Ivuna CI1 降落型 0.83~99.72 0.043 05
    Moapa Valley CM1 发现型 0.83~99.72 0.033 08
    QUE97077 CM2(2.6) 发现型 0.32~25.05 0.071 43
    Murchison CM2(2.5) 降落型 0.32~25.05 0.053 27
    Murray CM2(2.4) 降落型 0.32~25.05 0.103 55
    Nogoya CM2(2.2) 降落型 0.32~25.05 0.067 77
    Mighei CM2 降落型 0.32~25.05 0.064 53
    Cold Bokkeveld CM2(2.2) 降落型 0.32~25.05 0.062 67
    Al Rais CR2 降落型 0.83~99.72 0.049 26
    ALHA77307 CO3 发现型 0.83~99.72 0.056 58
    Allende CV3 降落型 0.83~99.72 0.070 53
    EET92002 CK4 发现型 0.9~24.923 0.030 01
    Tagish Lake C2(未分类) 降落型 1.43~25.05 0.026 12
      注:陨石信息来源于国际陨石协会。
    下载: 导出CSV

    表 2控制3 μm带中心位置变化的因素

    Table 2Factors controlling the variation of the 3 μm band center

    3 μm带中心
    位置/μm
    产生吸收的物质 蚀变程度 代表性陨石类型
    2.72 蛇纹石 完全蚀变 CI1、CM1
    2.72~2.85 蛇纹石与绿锥石 不完全蚀变 CM2
    > 2.85 矿物结合水、层间水、水铁矿、铁氧化物 少量蚀变、未蚀变 CO3
    3.0~3.1 水冰混合物、有机物 未知 小行星上观测
    下载: 导出CSV
  • [1] BATES H C, KING A J, HANNA K L D, et al. Linking mineralogy and spectroscopy of highly aqueously altered CM and CI carbonaceous chondrites in preparation for primitive asteroid sample return[J]. 2020, 1(71-101): 25.
    [2] DEMEO F E,BINZEL R P,SLIVAN S M,et al. An extension of the Bus asteroid taxonomy into the near-infrared[J]. Icarus,2009,202(1):160-180.doi:10.1016/j.icarus.2009.02.005
    [3] GEHRELS T. Asteroids III[M]. Tucson, AZ: University of Arizona Press, 2002.
    [4] AMELIN Y,KROT A N,HUTCHEON I D,et al. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions[J]. Science,2002,297(5587):1678-1683.doi:10.1126/science.1073950
    [5] BINZEL R P, GEHRELS T, MATTHEWS M S. Asteroids II[M]//Asteroids II. 1989[2022-08-29].https: //ui.adsabs.harvard.edu/abs/1989aste.conf.....B.
    [6] ALEXANDER C M O,BOWDEN R,FOGEL M L,et al. The provenances of asteroids,and their contributions to the volatile inventories of the terrestrial planets[J]. Science,2012,337(6095):721-723.doi:10.1126/science.1223474
    [7] BECK P. Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids[J]. Geochimica et Cosmochimica Acta,2010,74(16):4881-4892.doi:10.1016/j.gca.2010.05.020
    [8] TAKIR D, EMERY J P, MCSWEEN H Y, et al. Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites[J/OL]. Meteoritics & Planetary Science, 2013: 48(9), 1618-1637.
    [9] BECK P,GARENNE A,QUIRICO E,et al. Transmission infrared spectra (2–25 lm) of carbonaceous chondrites (CI,CM,CV-CK,CR,C2 ungrouped): mineralogy,water,and asteroidal processes[J]. Icarus,2014,229:263-277.doi:10.1016/j.icarus.2013.10.019
    [10] GARENNE A. Bidirectional reflectance spectroscopy of carbonaceous chondrites:Implications for water quantification and primary composition[J]. Icarus,2016,264:172-183.doi:10.1016/j.icarus.2015.09.005
    [11] KING A J. Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy[J]. Earth,Planets and Space,2015,67:198.
    [12] RUSSELL C T,RAYMOND C A. The Dawn mission to Vesta and Ceres[J]. Space Science Reviews,2011,163(1):3-23.
    [13] LAURETTA D S,BALRAM-KNUTSON S S,BESHORE E,et al. OSIRIS-REx:sample return from Asteroid (101955) Bennu[J]. Space Science Reviews,2017,212(1):925-984.
    [14] TSUDA Y,YOSHIKAWA M,ABE M,et al. System design of the Hayabusa 2—asteroid sample return mission to 1999 JU3[J]. Acta Astronautica,2013,91:356-362.doi:10.1016/j.actaastro.2013.06.028
    [15] LEVISON H F, OLKIN C, NOLL K S, et al. Lucy: surveying the diversity of the trojan asteroids: the fossils of planet formation[C]//48th Annual Lunar and Planetary Science Conference. The Woodlands, Texas: [s. n. ]: 2017.
    [16] BECK P. What is controlling the reflectance spectra (0.35-150 µm) of hydrated (and dehydrated) carbonaceous chondrites?[J]. Icarus,2018,313:124-138.doi:10.1016/j.icarus.2018.05.010
    [17] GILMOUR C M, HERD C D K, BECK P. Water abundance in the Tagish Lake meteorite from TGA and IR spectroscopy: evaluation of aqueous alteration[J]. 2019, 54: 22.
    [18] CLARK R N. Detection of adsorbed water and hydroxyl on the Moon[J]. Science,2009,326(5952):562-564.doi:10.1126/science.1178105
    [19] LI S,LUCEY P G,MILLIKEN R E,et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(36):8907-8912.doi:10.1073/pnas.1802345115
    [20] MILLIKEN R E,MUSTARD J F. Estimating the water content of hydrated minerals using reflectance spectroscopy II. effects of particle size[J]. Icarus,2007,189(2):550-573.doi:10.1016/j.icarus.2007.02.017
    [21] MILLIKEN R E,MUSTARD J F. Estimating the water content of hydrated minerals using reflectance spectroscopy I. effects of darkening agents and low-albedo materials[J]. Icarus,2007,189(2):550-573.doi:10.1016/j.icarus.2007.02.017
    [22] SIMON A A, KAPLAN H H, HAMILTON V E, et al. Widespread carbon-bearing materials on near-Earth asteroid (101955) Bennu[J]. Science : 2020, 370(6517): eabc3522.
    [23] DUAN A,WU Y,CLOUTIS E A,et al. Heating of carbonaceous materials:insights into the effects of thermal metamorphism on spectral properties of carbonaceous chondrites and asteroids[J]. Meteoritics & Planetary Science,2021,56(11):2035-2046.
    [24] HONNIBALL C I. Molecular water detected on the sunlit Moon by SOFIA[J]. Nature Astronomy,2021,5(2):121-127.doi:10.1038/s41550-020-01222-x
    [25] BATES H C,HANNA K L D,KING A J,et al. A spectral investigation of aqueously and thermally altered CM,CM‐An,and CY chondrites under simulated asteroid conditions for comparison with OSIRIS‐REx and Hayabusa2 observations[J]. Journal of Geophysical Research,2021,126(7):e2021JE006827.
    [26] RUBIN A E,TRIGO-RODRÍGUEZ J M,HUBER H,et al. Progressive aqueous alteration of CM carbonaceous chondrites[J]. Geochimica et Cosmochimica Acta,2007,71(9):2361-2382.doi:10.1016/j.gca.2007.02.008
    [27] HOWARD K T,BENEDIX G K,BLAND P A,et al. Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). part 1:total phyllosilicate abundance and the degree of aqueous alteration[J]. Geochimica et Cosmochimica Acta,2009,73(15):4576-4589.doi:10.1016/j.gca.2009.04.038
    [28] MILLIKEN R E, HIROI T, PATTERSON W. The NASA Reflectance Experiment Laboratory (RELAB) facility: past, present, and future[C]// 47th Annual Lunar and Planetary Science Conference. The Woodlands, Texas: NASA, 2016.
    [29] CLOUTIS E A,HUDON P,HIROI T,et al. Spectral reflectance properties of carbonaceous chondrites:2. CM chondrites[J]. Icarus,2011,216(1):309-346.doi:10.1016/j.icarus.2011.09.009
    [30] MCADAM M M. Aqueous alteration on asteroids:Linking the mineralogy and spectroscopy of CM and CI chondrites[J]. Icarus,2015,245:320-332.doi:10.1016/j.icarus.2014.09.041
    [31] BROWNING L B,MCSWEEN H Y,ZOLENSKY M E. Correlated alteration effects in CM carbonaceous chondrites[J]. Geochimica et Cosmochimica Acta,1996,60(14):2621-2633.doi:10.1016/0016-7037(96)00121-4
    [32] BROWNING L,MCSWEEN JR. H Y,ZOLENSKY M E. On the origin of rim textures surrounding anhydrous silicate grains in CM carbonaceous chondrites[J]. Meteoritics & Planetary Science,2000,35(5):1015-1023.
    [33] LEBOFSKY L A. Infrared reflectance spectra of asteroids :a search for water of hydration.[J]. The Astronomical Journal,1980,85:573-585.doi:10.1086/112714
    [34] RIVKIN A S,DAVIES J K,JOHNSON J R,et al. Hydrogen concentrations on C-class asteroids derived from remote sensing[J]. Meteoritics & Planetary Science,2003,38(9):1383-1398.
    [35] TAKIR D,EMERY J P. Outer Main Belt asteroids:Identification and distribution of four 3-μm spectral groups[J]. Icarus,2012,219(2):641-654.doi:10.1016/j.icarus.2012.02.022
    [36] HOWELL E, RIVKIN A, SODERBERG A, et al. Aqueous alteration of asteroids: correlation of the 3 μm and 0.7 μm hydration bands[J]. 1999, 31: 1074.
    [37] CAMPINS H,HARGROVE K,PINILLA-ALONSO N,et al. Water ice and organics on the surface of the asteroid 24 Themis[J]. Nature,2010,464(7293):1320-1321.doi:10.1038/nature09029
    [38] BECK P,QUIRICO E,SEVESTRE D,et al. Goethite as an alternative origin of the 3.1 μm band on dark asteroids[J]. Astronomy & Astrophysics,2011,526:A85.
    [39] VILAS F. A cheaper,faster,better way to detect water of hydration on solar system bodies[J]. Icarus,1994,111(2):456-467.doi:10.1006/icar.1994.1156
    [40] KITAZATO K,MILLIKEN R E,IWATA T,et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy[J]. Science,2019,364(6437):272-275.doi:10.1126/science.aav7432
    [41] GALIANO A,PALOMBA E,D’AMORE M,et al. Characterization of the Ryugu surface by means of the variability of the near-infrared spectral slope in NIRS3 data[J]. Icarus,2020,351:113959.doi:10.1016/j.icarus.2020.113959
    [42] KITAZATO K,MILLIKEN R E,IWATA T,et al. Thermally altered subsurface material of asteroid (162173) Ryugu[J]. Nature Astronomy,2021,5(3):246-250.doi:10.1038/s41550-020-01271-2
    [43] HAMILTON V E,SIMON A A,CHRISTENSEN P R,et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu[J]. Nature Astronomy,2019,3(4):332-340.doi:10.1038/s41550-019-0722-2
    [44] YOKOYAMA T, NAGASHIMA K, NAKAI I, et al. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites[J]. Science, https: //www.science.org/doi/10.1126/science.abn7850.
  • [1] 肖大舟, 王立科, 韩超, 刘宇翔, 贺瑞聪, 曹倩.一种异形轻量化空间光谱仪铝反射镜结构设计. 深空探测学报(中英文),doi:10.15982/j.issn.2096-9287.2022.20220012
    [2] 卢皓, 张辉, 张朕, 于天一, 崔晓峰, 胡晓东, 费立刚.火星车多光谱相机桅杆精确指向控制方法. 深空探测学报(中英文),doi:10.15982/j.issn.2096-9287.2022.20220007
    [3] 倪阳, 泮斌峰.小行星多面体模型的深度神经网络近似. 深空探测学报(中英文),doi:10.15982/j.issn.2096-9287.2022. 20200074
    [4] 孙海彬, 孙胜利.近地小行星观测技术分析. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2020.20180314001
    [5] 张荣桥, 黄江川, 赫荣伟, 耿言, 孟林智.小行星探测发展综述. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2019.05.002
    [6] 李碧岑, 殷建杰, 张昊, 王伟刚.主带彗星探测的科学目的及光谱仪设计构想. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2019.05.010
    [7] 丹尼尔J.谢尔斯.小行星远距离抵近轨道. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2019.05.005
    [8] 丹尼尔T.布瑞特.小行星与陨石的光谱联系. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2019.05.004
    [9] 舒嵘, 徐卫明, 付中梁, 万雄, 袁汝俊.深空探测中的激光诱导击穿光谱探测仪. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2018.05.007
    [10] 关昭, 乔卫东, 杨建峰, 薛彬, 陶金有.火星多光谱相机的地面几何标定研究. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2018.05.009
    [11] 郭弟均, 刘建忠, HEADW.James, 李帅, POTTERW.K.Ross, 林红磊.月球阿波罗盆地区域月壳结构及光谱特征. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2018.05.013
    [12] 张韵, 刘岩, 李俊峰.小行星防御动能撞击效果评估. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2017.01.008
    [13] 刘雪奇, 孙海彬, 孙胜利.近地小行星防御策略分析. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2017.06.009
    [14] 邬静云, 高有涛.利用绳系太阳帆减缓小行星自转的技术研究. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2016.01.007
    [15] 徐青, 王栋, 邢帅, 蓝朝桢.小行星形貌测绘与表征技术. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2016.04.007
    [16] 曾祥远, 龚胜平, 李俊峰, 蒋方华, 宝音贺西.应用太阳帆悬停探测哑铃形小行星. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2015.01.007
    [17] 周必磊, 陆希, 尤伟.载人小行星探测的总体方案设想. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2015.01.006
    [18] 姜会林, 江伦, 付强, 董科研.空间碎片偏振光谱成像探测技术研究. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2015.03.014
    [19] 于洋, 宝音贺西.小天体附近的轨道动力学研究综述. 深空探测学报(中英文),
    [20] 倪彦硕, 宝音贺西, 李俊峰.考虑太阳摄动的小行星附近轨道动力学. 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:77
  • 被引次数:0
出版历程
  • 收稿日期:2022-08-19
  • 修回日期:2022-10-25
  • 网络出版日期:2022-11-23

基于碳质球粒陨石的小行星水蚀变光谱学研究

doi:10.15982/j.issn.2096-9287.2022.20220077
    基金项目:中国科学院先导B资助项目(XDB41010104);国家自然科学基金资助项目(12150009、11633009);空间碎片与近地小行星防御科研资助项目(KJSP2020020205,KJSP2020020204,KJSP2020020102,KJSP2020020101);小行星基金会资助项目
    作者简介:

    余金霏(1997− ),男,硕士研究生,主要研究方向:碳质小行星与碳质球粒陨石。通讯地址:江苏省南京市栖霞区元化路10号,中国科学院紫金山天文台(210023)电话:15912550661E-mail:yjf1918@mail.ustc.edu.cn

    赵海斌(1975− ),男,研究员,博士生导师,主要研究方向:太阳系天体观测研究。本文通讯作者。通讯地址:江苏省南京市栖霞区元化路10号,中国科学院紫金山天文台(210023)电话:15312042848E-mail:meteorzh@pmo.ac.cn

  • • Analysis of the NIR-MIR spectral variation laws of aqueous alteration. • A series of carbonaceous chondrites reflecting the sequence of the degree of aqueous alteration were selected for spectroscopic study. • Revealed the connection between spectral features variations and petrological characteristics.
  • 中图分类号:V

摘要:针对未来对富挥发份小行星的遥感探测需求,开展了对碳质球粒陨石水蚀变的光谱学研究。分析了15个不同蚀变程度的碳质球粒陨石的1~20 μm红外光谱特征与岩石学性质,总结了水蚀变过程的光谱变异规律。结果表明:随着蚀变程度加深,指示层状硅酸盐与水分子的3 μm吸收带与仅指示水分子的6 μm吸收带的强度均加深,吸收中心均向短波方向移动。碳质球粒陨石的3 μm吸收带随蚀变程度增加而变得尖锐,吸收带光谱形态与蛇纹石类矿物的3 μm吸收特征类似,而6 μm吸收带形态随蚀变程度增加无明显变化。硅酸盐矿物在9~13 μm特征区的光谱形状也随蚀变程度增加而改变,12.4 μm/11.4 μm反射率比值减小,这是由于无水硅酸盐转化为层状硅酸盐。光谱变异规律未来可应用于小行星探测。

注释:
1) • Analysis of the NIR-MIR spectral variation laws of aqueous alteration. • A series of carbonaceous chondrites reflecting the sequence of the degree of aqueous alteration were selected for spectroscopic study. • Revealed the connection between spectral features variations and petrological characteristics.

English Abstract

余金霏, 赵海斌, 吴昀昭. 基于碳质球粒陨石的小行星水蚀变光谱学研究[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2022.20220077
引用本文: 余金霏, 赵海斌, 吴昀昭. 基于碳质球粒陨石的小行星水蚀变光谱学研究[J]. 深空探测学报(中英文).doi:10.15982/j.issn.2096-9287.2022.20220077
YU Jinfei, ZHAO Haibin, WU Yunzhao. Spectroscopic Study of Aqueous Alteration of Asteroids Based on Carbonaceous Chondrites[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2022.20220077
Citation: YU Jinfei, ZHAO Haibin, WU Yunzhao. Spectroscopic Study of Aqueous Alteration of Asteroids Based on Carbonaceous Chondrites[J].Journal of Deep Space Exploration.doi:10.15982/j.issn.2096-9287.2022.20220077
参考文献 (44)

返回顶部

目录

    /

      返回文章
      返回
        Baidu
        map