中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校百佳科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深空探测器任务规划认知图谱及多属性约束冲突检测

柳景兴,王彬,毛维杨,熊新

柳景兴, 王彬, 毛维杨, 熊新. 深空探测器任务规划认知图谱及多属性约束冲突检测[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2023.20220064
引用本文: 柳景兴, 王彬, 毛维杨, 熊新. 深空探测器任务规划认知图谱及多属性约束冲突检测[J]. 深空探测学报(中英文).doi:10.15982/j.issn.2096-9287.2023.20220064
LIU Jingxing, WANG Bin, MAO Weiyang, XIONG Xin. Cognitive Graph for Autonomous Deep Space Mission Planning and Multi-Constraints Collision Detection[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2023.20220064
Citation: LIU Jingxing, WANG Bin, MAO Weiyang, XIONG Xin. Cognitive Graph for Autonomous Deep Space Mission Planning and Multi-Constraints Collision Detection[J].Journal of Deep Space Exploration.doi:10.15982/j.issn.2096-9287.2023.20220064

深空探测器任务规划认知图谱及多属性约束冲突检测

doi:10.15982/j.issn.2096-9287.2023.20220064
详细信息
    作者简介:

    (1998− ),男,硕士研究生,主要研究方向:人工智能、深空探测器自主任务规划。通讯地址:云南省昆明市呈贡新区景明南路727号(昆明理工大学信自楼)(650504)电话:13667259938E-mail:719878756@qq.com

  • ● A system framework of cognitive graph for autonomous mission planning in deep space exploration is proposed. ● Using graph representations learning to implement knowledge modeling for task planning of deep spacecraft. ● Mapping state transition into triples to realize rules matching in the process of task planning. ● A multi-attributes constraint conflict detection algorithm is proposed and realized.
  • 中图分类号:V1

Cognitive Graph for Autonomous Deep Space Mission Planning and Multi-Constraints Collision Detection

  • 摘要:针对深空探测器任务规划中多子系统协同机制中的多约束问题,提出一种深空探测任务规划认知图谱构架及多属性约束冲突检测方法。采用图表示方法实现任务规划的知识建模,将状态转移图解构为三元组实现任务规划过程中的规则匹配,并基于图模型推理方法提出多属性约束冲突检测算法,从而实现多子系统任务规划的认知推理和约束冲突检验。使用不同规模的深空探测任务规划算例对本文方法进行了仿真实验,实验结果显示与遗传算法、传统启发式算法、带约束的启发式算法及进化神经网络算法相比,本文方法可有效缩短规划的求解时间,缩小解空间并且降低内存消耗,有效提升了深空探测任务规划的成功率和可行性。
    Highlights
    ● A system framework of cognitive graph for autonomous mission planning in deep space exploration is proposed. ● Using graph representations learning to implement knowledge modeling for task planning of deep spacecraft. ● Mapping state transition into triples to realize rules matching in the process of task planning. ● A multi-attributes constraint conflict detection algorithm is proposed and realized.
  • 图 1深空探测任务规划问题的知识建模

    Fig. 1Knowledge modeling for deep space exploration mission planning

    图 2多属性三元组图模型

    Fig. 2Multi-attribution triple model in cognitive graph

    图 3认知图谱规划结果及对应的甘特图

    Fig. 3Cognitive graph planning results and corresponding Gantt charts

    图 4算例10中不同深空探测任务规划序列中电量消耗统计

    Fig. 4Statistics of electricity consumption in different deep space exploration mission planning sequences in Example 10

    图 5深空探测自主任务规划求解时间箱型图

    Fig. 5Box plot of deep space exploration autonomous mission solver time

    图 6本文算法相较于其他算法在不同算例中的时间提升率

    Fig. 6Time improvement rate of our method compared with others in different examples

    图 7本文算法与其他算法在不同算例中的平均求解时间

    Fig. 7Average solution time of our method and that of others in different examples

    图 8本文算法与其他算法在不同算例中的解空间

    Fig. 8Solution space of our method and that of others in different examples

    图 9本文算法相较于其他算法在不同算例中的内存消耗

    Fig. 9Memory consumption of our method compared with that of others in different examples

    图 10本文算法相较于其他算法在不同算例中的内存消耗降低率

    Fig. 10Memory reduction rate of our method compared with that of others in different examples

    表 1深空探测任务规划问题的解

    Table 1Solution to deep space exploration mission planning

    子系统 $ \xi_ 1 $ $ \xi _2 $ $ \xi_ 3 $ $ \cdots $ $ \xi_{ z - 2} $ $ \xi_{ z - 1} $ $ \xi_{z }$
    $\,\mu_1$ $ s_{11} $ $ a_{11} $ $ s_{12} $ $ \cdots $
    $\,\mu_2$ $ s_{21} $ $ a_{21} $ $ \cdots $ $ s_{2(n - 1)} $ $ a_{2o} $ $ s_{2n} $
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    $\,\mu_ m$ $ s_{m(n - 1)} $ $ a_{mo} $ $ s_{mn} $
    下载: 导出CSV

    表 2创建深空探测任务规划认知图谱

    Table 2Multi-attributes triple model in cognitive graph

    Algorithm 1: Create Mission Planning Cognitive Graph for Deep Space
    Input: SPO sheet spos, Cognition Graph cg, Point Sets in cg ps, Edge Sets in cg es;
    Output: cg ;
    1: build $V_1 \leftarrow \phi ,V_2 \leftarrow \phi$ for saving points temporarily
    2: build $ V \leftarrow \phi $ for saving points permanently
    3: build $ E \leftarrow \phi $ for saving edges temporarily
    4: For $ v $ in cg do:
    5: $V_1 \leftarrow V_1 + \{ s_{ij}\} ,V_2 \leftarrow V_2 + \{ s_{i'j'}\}$
    6: End For
    7: $V \leftarrow V_1 \cup (V_1 - V_2)$
    8: For $v_{ij}$ in $ V $do:
    9: draw $v_{ij}$ in cg representing $s_{ij}$
    10: End For
    11: For $\varepsilon_{ iu}$ in $ E $ do:
    12: build $v_s \leftarrow v_{ij}$ for the start of ${\rm{ma}}_{iu}$
    13: build $v_e \leftarrow v_{i'j'}$ for the end of ${\rm{ma}}_{iu}$
    14: draw $\varepsilon_{ iu}$ from $v_s$ to $v_e$ representing ${\rm{ma}}_{iu}$
    15: End For
    下载: 导出CSV

    表 3基于认知图谱的任务规划方法中多属性权值约束冲突检测的实现

    Table 3Mission planning in cognitive graph with multi-attribute constraint conflict detection

    Algorithm 2: Mission Planning in Cognitive Graph with Multi-attribute Constraint Conflict Detection
    Input: solutions ${S_{\rm T}}$ and ${A_{\rm T}}$, Cognitive Graph cg, capacity maximum constraint $c_{\max }$, electricity maximum constraint $e_{\max}$, fuel maximum constraint $f_{\max}$, time maximum constraint $t_{\max}$;
    Output: flag of ${S_{\rm T}}$ fs, flag of ${A_{\rm T}}$ fm;
    1: ${S_{\rm T}} \leftarrow \phi ,{A_{\rm T}} \leftarrow \phi$
    2: build stack $ \leftarrow \phi $ checking constraint conflictions
    3: For $s_{ij}$ in cg do :
    4: push $s_{ij}$ into stack
    5: While stack is not $ \phi $ do :
    6: buildsfor saving popped item of stack
    7: aggregate neighbors of $s_{ij}$ intoU
    8: ForuinUdo :
    9: IF $ u \notin $ stack do :
    8: putuinto ${S_{\rm T}}$
    9: locate$a_{iu}$withuands
    10: put $a_{iu }$ into ${A_{\rm T}}$
    11: End IF
    12: End For
    13: End While
    14: End For
    15: $\begin{aligned}[b] fm \leftarrow & (\sum\limits_{a_{iu} }^{ {\boldsymbol{A} }_{\rm T} } {c_{iu} } + c_{\rm safe} < c_{\max} ) \cap \;\; (\sum\limits_{a_{iu} }^{ { {\boldsymbol{A} }_{\rm T} } } {e_{iu} } + e_{\rm safe} < e_{\max} ) \cap \\ & (\sum\limits_{a_{iu} }^{ { {\boldsymbol{A} }_{\rm T} } } f_{iu} < f_{\max} ) \cap \;\;(\sum\limits_{a_{iu} }^{ { {\boldsymbol{A} }_{\rm T} } } t_{iu} < t_{\max} ) \\ \end{aligned}$
    16: $fs \leftarrow (s_{ij} \cap s_{i(j + 1)} \to s_{i(j + 2)}) \cup (s_{ij} \cup s_{i(j + 1)} \to s_{i(j + 2)})$
    下载: 导出CSV

    表 4实验算例说明

    Table 4Experimental example description

    项目 算例1 算例2 算例3 算例4 算例5 算例6 算例7 算例8 算例9 算例10
    存储max 850 400 400 400 350 800 350 400 850 800
    电量max 900 800 950 1 000 700 850 600 750 700 650
    燃料max 300 400 450 500 200 300 300 400 300 400
    时间max 2 900 3 000 3 550 3 500 2 500 3 500 2 500 3 000 3 500 3 000
    下载: 导出CSV
  • [1] 崔平远,徐瑞,朱圣英,等. 深空探测器自主技术发展现状与趋势[J]. 航空学报,2014,35(1):13-28.

    CUI P Y,XU R,ZHU S Y,et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1):13-28.
    [2] 赵凡宇,徐瑞,崔平远. 启发式深空探测器任务规划方法[J]. 宇航学报,2015,36(5):496-503.

    ZHAO F Y,XU R,CUI P Y. Heuristic mission planning approach for deep space explorer[J]. Journal of Astronautics,2015,36(5):496-503.
    [3] 金颢,徐瑞,崔平远,等. 基于扩展状态深空探测器任务规划方法[J]. 深空探测学报(中英文),2018,5(6):569-574.doi:10.15982/j.issn.2095-7777.2018.06.010

    JIN H,XU R,CUI P Y,et al. Mission planning approach based on extensible states for deep space probes[J]. Journal of Deep Space Exploration,2018,5(6):569-574.doi:10.15982/j.issn.2095-7777.2018.06.010
    [4] 王卓,徐瑞. 基于多目标优化的深空探测器姿态组合规划方法[J]. 深空探测学报(中英文),2021,8(2):147-153.

    WANG Z,XU R. Combination planning for attitude maneuver of deep space probes based on multi-objective optimization[J]. Journal of Deep Space Exploration,2021,8(2):147-153.
    [5] JARZĘBOWSKA E,PILARCZYK B. Design of a tracking controller for object interception in space[J]. Discontinuity,Nonlinearity,and Complexity,2017,6(4):435-443.
    [6] 陈超,徐瑞,李朝玉,等. 期望状态序列导向的深空探测器规划修复方法[J]. 宇航学报,2021,42(11):1385-1395.doi:10.3873/j.issn.1000-1328.2021.11.005

    CHEN C,XU R,LI Z Y,et al. Plan repair method of deep space probe based on the expected state sequence[J]. Journal of Astronautics,2021,42(11):1385-1395.doi:10.3873/j.issn.1000-1328.2021.11.005
    [7] ZHAO Y T,XU R,JIANG H P,et al. Decentralized privacy-preserving onboard mission planning for multi-probe system[J]. Acta Astronautica,2021,179:130-145.doi:10.1016/j.actaastro.2020.10.041
    [8] 王鑫,赵清杰,徐瑞. 基于知识图谱的深空探测器任务规划建模[J]. 深空探测学报(中英文),2021,8(3):315-323.

    WANG X,ZHAO Q J,XU R. Modeling of mission planning for deep space probe based on knowledge graph[J]. Journal of Deep Space Exploration,2021,8(3):315-323.
    [9] 金洋,王日新,徐敏强. 基于状态记忆的航天器自主故障诊断方法[J]. 系统工程与电子技术,2015,37(6):1452-1458.doi:10.3969/j.issn.1001-506X.2015.06.34
    [10] JIN Y,WANG R X,XU M Q. Spacecraft autonomous fault diagnosis method based on state memory[J]. Systems Engineering and Electronics,2015,37(6):1452-1458.
    [11] 徐瑞,李朝玉,朱圣英,等. 深空探测器自主规划技术研究进展[J]. 深空探测学报(中英文),2021,8(2):111-123.
    [12] XU R,LI Z Y,ZHU S Y,et al. Research progress of autonomous planning technology for deep space probes[J]. Journal of Deep Space Exploration,2021,8(2):111-123.
    [13] LI Z Y, DING X, LIU T. Constructing narrative event evolutionary graph for script event prediction[C]//27th International Joint Conference on Artificial Intelligence (IJCAI'18). AIAA: [s. n.], 2008.
    [14] DING M, ZHOU C, CHEN Q, et al. Cognitive graph for multi-hop reading comprehension at scale [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. ACL: Italy, 2019.
    [15] 王军平,张文生,王勇飞,等. 面向大数据领域的事理认知图谱构建与推断分析[J]. 中国科学:信息科学,2020,50(7):988-1002.doi:10.1360/SSI-2019-0273

    WANG J P,ZHANG W S,WANG Y F,et al. Constructing and inferring event logic cognitive graph in the field of big data[J]. Scientia Sinica Informationis,2020,50(7):988-1002.doi:10.1360/SSI-2019-0273
    [16] 王鑫,邹磊,王朝坤,等. 知识图谱数据管理研究综述[J]. 软件学报,2019,30(7):2139-2174.doi:10.13328/j.cnki.jos.005841

    WANG X,ZOU L,WANG C K. Research on knowledge graph data management:a survey[J]. Journal of Software,2019,30(7):2139-2174.doi:10.13328/j.cnki.jos.005841
    [17] HOLZSCHUHER F, PEINL R. Performance of graph query languages: comparison of cypher, gremlin and native access in Neo4j[C]//Joint EDBT/ICDT 2013 Workshops (EDBT '13). New York, NY, USA: Association for Computing Machinery, 2013.
    [18] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//31st International Conference on Neural Information Processing Systems (NIPS'17). Red Hook, NY, USA: Curran Associates Inc. , 2017.
  • [1] 毛维杨, 王彬, 柳景兴, 熊新.基于强化学习的深空探测器自主任务规划方法. 深空探测学报(中英文),doi:10.15982/j.issn.2096-9287.2022.20220049
    [2] 于国斌.深空探测任务协同的系统工程方法应用及趋势. 深空探测学报(中英文),doi:10.15982/j.issn.2096-9287.2021.20210036
    [3] 王卓, 徐瑞.基于多目标优化的深空探测器姿态组合规划方法. 深空探测学报(中英文),doi:10.15982/j.issn.2096-9287.2021.20200069
    [4] 徐瑞, 李朝玉, 朱圣英, 王棒, 梁子璇, 尚海滨.深空探测器自主规划技术研究进展. 深空探测学报(中英文),doi:10.15982/j.issn.2096-9287.2021.20210039
    [5] 陈春亮, 张正峰, 盛瑞卿, 杨孟飞.深空探测跳跃式再入返回任务设计. 深空探测学报(中英文),doi:10.15982/j.issn.2096-9287.2021.20210016
    [6] 王鑫, 赵清杰, 徐瑞.基于知识图谱的深空探测器任务规划建模. 深空探测学报(中英文),doi:10.15982/j.issn.2096-9287.2021.20210030
    [7] 牛厂磊, 罗志福, 雷英俊, 王文强, 郑见杰, 乔学荣, 罗洪义, 胡文军, 钟武烨.深空探测先进电源技术综述. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2020.20200002
    [8] 王颖, 朱安文, 刘飞标, 田岱, 王铸.超远深空探测任务的能源动力方案. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2020.20190327001
    [9] 雷英俊, 朱立颖, 张文佳.我国深空探测任务电源系统发展需求. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2020.20190712001
    [10] 徐赫屿, 王大轶, 刘成瑞, 李文博, 符方舟, 张科备.深空探测器可重构性评价与自主重构策略. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2019.04.010
    [11] 陈莉丹, 谢剑锋, 刘勇, 陈明.中国深空探测任务轨道控制技术综述. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2019.03.002
    [12] 马辛, 宁晓琳, 刘劲, 刘刚.一种平面约束辅助测量的深空探测器自主天文导航方法. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2019.03.014
    [13] 王大轶, 符方舟, 孟林智, 李文博, 李茂登, 徐超, 葛东明.深空探测器自主控制技术综述. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2019.04.002
    [14] 李永, 丁凤林, 周成.深空探测推进技术发展趋势. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2018.04.002
    [15] 张国万, 李嘉华.冷原子干涉技术原理及其在深空探测中的应用展望. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2017.01.002
    [16] 刘瑞霞, 张剑桥.基于测速测角敏感器的火星探测器自主导航方法研究. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2016.03.004
    [17] 沈自才, 代巍, 白羽, 刘荣强, 丁义刚, 刘业楠.载人深空探测任务的空间环境工程关键问题. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2016.02.001
    [18] 王伟, 马彦涵, 周易倩, 方宝东.深空探测磁动力技术研究进展. 深空探测学报(中英文),doi:10.15982/j.issn.2095-7777.2015.03.002
    [19] 张大鹏, 雷勇军.深空探测返回舱着陆冲击动力学分析. 深空探测学报(中英文),
    [20] 吴伟仁, 于登云.深空探测发展与未来关键技术. 深空探测学报(中英文),
  • 加载中
计量
  • 文章访问数:7
  • 被引次数:0
出版历程
  • 网络出版日期:2023-03-01

深空探测器任务规划认知图谱及多属性约束冲突检测

doi:10.15982/j.issn.2096-9287.2023.20220064
    作者简介:

    (1998− ),男,硕士研究生,主要研究方向:人工智能、深空探测器自主任务规划。通讯地址:云南省昆明市呈贡新区景明南路727号(昆明理工大学信自楼)(650504)电话:13667259938E-mail:719878756@qq.com

  • ● A system framework of cognitive graph for autonomous mission planning in deep space exploration is proposed. ● Using graph representations learning to implement knowledge modeling for task planning of deep spacecraft. ● Mapping state transition into triples to realize rules matching in the process of task planning. ● A multi-attributes constraint conflict detection algorithm is proposed and realized.
  • 中图分类号:V1

摘要:针对深空探测器任务规划中多子系统协同机制中的多约束问题,提出一种深空探测任务规划认知图谱构架及多属性约束冲突检测方法。采用图表示方法实现任务规划的知识建模,将状态转移图解构为三元组实现任务规划过程中的规则匹配,并基于图模型推理方法提出多属性约束冲突检测算法,从而实现多子系统任务规划的认知推理和约束冲突检验。使用不同规模的深空探测任务规划算例对本文方法进行了仿真实验,实验结果显示与遗传算法、传统启发式算法、带约束的启发式算法及进化神经网络算法相比,本文方法可有效缩短规划的求解时间,缩小解空间并且降低内存消耗,有效提升了深空探测任务规划的成功率和可行性。

注释:
1) ● A system framework of cognitive graph for autonomous mission planning in deep space exploration is proposed. ● Using graph representations learning to implement knowledge modeling for task planning of deep spacecraft. ● Mapping state transition into triples to realize rules matching in the process of task planning. ● A multi-attributes constraint conflict detection algorithm is proposed and realized.

English Abstract

柳景兴, 王彬, 毛维杨, 熊新. 深空探测器任务规划认知图谱及多属性约束冲突检测[J]. 深空探测学报(中英文). doi: 10.15982/j.issn.2096-9287.2023.20220064
引用本文: 柳景兴, 王彬, 毛维杨, 熊新. 深空探测器任务规划认知图谱及多属性约束冲突检测[J]. 深空探测学报(中英文).doi:10.15982/j.issn.2096-9287.2023.20220064
LIU Jingxing, WANG Bin, MAO Weiyang, XIONG Xin. Cognitive Graph for Autonomous Deep Space Mission Planning and Multi-Constraints Collision Detection[J]. Journal of Deep Space Exploration. doi: 10.15982/j.issn.2096-9287.2023.20220064
Citation: LIU Jingxing, WANG Bin, MAO Weiyang, XIONG Xin. Cognitive Graph for Autonomous Deep Space Mission Planning and Multi-Constraints Collision Detection[J].Journal of Deep Space Exploration.doi:10.15982/j.issn.2096-9287.2023.20220064
参考文献 (18)

返回顶部

目录

    /

      返回文章
      返回
        Baidu
        map