中文核心期刊

高校精品期刊Ei收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合动力电动汽车能量管理技术研究综述

何洪文,孟祥飞

downloadPDF
何洪文, 孟祥飞. 混合动力电动汽车能量管理技术研究综述[J]. bob手机在线登陆学报自然版, 2022, 42(8): 773-783. doi: 10.15918/j.tbit1001-0645.2022.161
引用本文: 何洪文, 孟祥飞. 混合动力电动汽车能量管理技术研究综述[J]. bob手机在线登陆学报自然版, 2022, 42(8): 773-783.doi:10.15918/j.tbit1001-0645.2022.161
HE Hongwen, MENG Xiangfei. A Review on Energy Management Technology of Hybrid Electric Vehicles[J]. Transactions of Beijing institute of Technology, 2022, 42(8): 773-783. doi: 10.15918/j.tbit1001-0645.2022.161
Citation: HE Hongwen, MENG Xiangfei. A Review on Energy Management Technology of Hybrid Electric Vehicles[J].Transactions of Beijing institute of Technology, 2022, 42(8): 773-783.doi:10.15918/j.tbit1001-0645.2022.161

混合动力电动汽车能量管理技术研究综述

doi:10.15918/j.tbit1001-0645.2022.161
基金项目:国家自然科学基金资助项目(52172377)
详细信息
    作者简介:

    何洪文(1975-),男,教授,博士生导师,E-mail:hwhebit@bit.edu.cn

    通讯作者:

    孟祥飞(1992-),男,博士生,E-mail:mengxiangfei@bit.edu.cn

  • 中图分类号:U469.7

A Review on Energy Management Technology of Hybrid Electric Vehicles

  • 摘要:能量管理策略对于提高混合动力电动汽车的燃油经济性、保护系统的健康状态、以及减少温室气体排放具有至关重要的作用,但由于动力系统复杂的非线性结构以及在线应用的实时性要求,开发高效的能量管理策略仍是一项极具挑战性的任务. 为此,本文对能量管理技术的研究进展进行了全面的总结. 首先,综述目前混合动力电动汽车广泛采用的机电耦合系统,总结各类系统的拓扑结构与运行特点;其次,综合分析近年来能量管理策略的研究进展以及发展趋势;同时从最优性以及实时性等关键技术指标出发,评价各类方法的技术优势与不足,为进一步的工程应用提供参考;最后,展望能量管理技术未来的研究方向,希望为能量管理策略在智能网联环境下的发展提供借鉴.

  • 图 1电耦合动力系统

    Figure 1.Electrical coupled powertrain

    图 2机械耦合动力系统

    Figure 2.Mechanical coupled powertrain

    图 3机械-电耦合动力系统

    Figure 3.Mechanical-electrical coupled powertrain

    图 4能量管理技术分类

    Figure 4.Classification of energy management strategies

    图 5CD-CS控制策略

    Figure 5.The logic structure of CD-CS

    图 6模糊逻辑控制策略

    Figure 6.Schematic diagram of fuzzy logic strategy

    图 7基于动态规划的规则型策略参数校准

    Figure 7.Dynamic programming-based parameter recalibration of the rule-based strategies

    图 8预测ECMS策略示意图

    Figure 8.Schematic diagram of the predictive ECMS strategy

    图 9机器学习方法

    Figure 9.Machine learning methods

    图 10基于驾驶工况识别的模糊逻辑控制

    Figure 10.Driving cycle recognition based fuzzy logic control

    图 11基于强化学习的能量管理策略

    Figure 11.Reinforcement learning based EMS

    图 12基于DDPG与计算机视觉的能量管理策略

    Figure 12.DDPG with computer vision based EMS

  • [1] CHEN X, LIU Y, WANG Q, et al. Pathway toward carbon-neutral electrical systems in China by mid-century with negative CO2abatement costs informed by high-resolution modeling[J]. Joule, 2021, 5(10):2715 − 2741.doi:10.1016/j.joule.2021.10.006
    [2] 曾小华, 崔臣, 宋大凤, 等. 行星混联混合动力汽车节油因素分析[J]. bob手机在线登陆学报, 2019, 39(7):699 − 705.doi:10.15918/j.tbit1001-0645.2019.07.007

    ZENG Xiaohua, CUI Chen, SONG Dafeng, et al. Analysis on fuel-saving factors of planetary hybrid electric vehicles[J]. Transactions of Beijing Institute of Technology, 2019, 39(7):699 − 705. (in Chinese)doi:10.15918/j.tbit1001-0645.2019.07.007
    [3] TRAN D, VAFAEIPOUR M, BAGHDADI M, et al. Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies[J]. Renewable and Sustainable Energy Reviews, 2020, 119:109596.doi:10.1016/j.rser.2019.109596
    [4] KIM M, JUNG D, MIN K. Hybrid thermostat strategy for enhancing fuel economy of series hybrid intracity bus[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8):3569 − 3579.doi:10.1109/TVT.2013.2290700
    [5] WU X, DU J, HU C, et al. The economic analysis of a plug-in series hybrid electric vehicle in different energy management strategy[C]//Proceedings of 2013 IEEE Vehicle Power and Propulsion Conference (VPPC). [S. l.]: IEEE, 2013: 1 − 5.
    [6] DAVIS K, HAYES J. Fuel cell vehicle energy management strategy based on the cost of ownership[J]. IET Electrical Systems in Transportation, 2019, 9(4):226 − 236.doi:10.1049/iet-est.2019.0021
    [7] PENG C, FENG F, XIAO Y, et al. Multi-working points power follower based energy management strategy for series hybrid electric vehicle[J]. Journal of Physics:Conference Series, 2020, 1601:022039.doi:10.1088/1742-6596/1601/2/022039
    [8] TROVAO J, PEREIRINHA P. Control scheme for hybridised electric vehicles with an online power follower management strategy[J]. IET Electrical Systems in Transportation, 2015, 5(1):12 − 23.doi:10.1049/iet-est.2013.0038
    [9] 刘楠, 于博轩, 郭爱, 等. 燃料电池混合动力的功率跟随管理策略分析[J]. 西南交通大学学报, 2020, 55(6):1147 − 1154.doi:10.3969/j.issn.0258-2724.20180733

    LIU Nan, YU Boxuan, GUO Ai, et al. Analysis of power tracking management strategy for fuel cell hybrid system[J]. Journal of Southwest Jiaotong University, 2020, 55(6):1147 − 1154. (in Chinese)doi:10.3969/j.issn.0258-2724.20180733
    [10] SONG K, LI F, HU X, et al. Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm[J]. Journal of Power Sources, 2018, 389:230 − 239.doi:10.1016/j.jpowsour.2018.04.024
    [11] XU L, LI J, OUYANG M, et al. Multi-mode control strategy for fuel cell electric vehicles regarding fuel economy and durability[J]. International Journal of Hydrogen Energy, 2014, 39:2374 − 2389.doi:10.1016/j.ijhydene.2013.11.133
    [12] LI Q, SU B, PU Y, et al. A state machine control based on equivalent consumption minimization for fuel cell/supercapacitor hybrid tramway[J]. IEEE Transactions on Transportation Electrification, 2019, 5(2):552 − 564.doi:10.1109/TTE.2019.2915689
    [13] ASENSIO E M, MAGALLAN G. A, ANGELO C H, et al. Energy management on battery/ultracapacitor hybrid energy storage system based on adjustable bandwidth filter and sliding-mode control[J]. Journal of Energy Storage, 2020, 30:101569.doi:10.1016/j.est.2020.101569
    [14] FU Z, LI Z, SI P, et al. A hierarchical energy management strategy for fuel cell/battery/supercapacitor hybrid electric vehicles[J]. International Journal of Hydrogen Energy, 2019, 44(39):22146 − 22159.doi:10.1016/j.ijhydene.2019.06.158
    [15] BAU Y, HE H, LI J, et al. Battery anti-aging control for a plug-in hybrid electric vehicle with a hierarchical optimization energy management strategy[J]. Journal of Cleaner Production, 2019, 237:117841.doi:10.1016/j.jclepro.2019.117841
    [16] RIFAI N, SABOR J, ALAOUI C. Energy management strategy of a fuel-cell electric vehicle based on wavelet transform[C]//Proceedings of International Conference on Artificial Intelligence & Industrial Applications. Springer, Cham, 2020: 220 − 235.
    [17] WANG C, YANG R, YU Q. Wavelet transform based energy management strategies for plug-in hybrid electric vehicles considering temperature uncertainty.[J]. Applied Energy, 2019, 256:113928.doi:10.1016/j.apenergy.2019.113928
    [18] WANG C, XIONG R, HE H, et al. Comparison of decomposition levels for wavelet transform based energy management in a plug-in hybrid electric vehicle[J]. Journal of Cleaner Production, 2019, 210:1085 − 1097.doi:10.1016/j.jclepro.2018.11.082
    [19] GAO D, JIN Z, LU Q. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus[J]. Journal of Power Sources, 2008, 185(1):311 − 317.doi:10.1016/j.jpowsour.2008.06.083
    [20] ZDRAVKOVIC S, VUJANOVIC D, STOKIC M, et al. Evaluation of professional driver’s eco-driving skills based on type-2 fuzzy logic model[J]. Neural Computing and Applications, 2021, 33(18):11541 − 11554.doi:10.1007/s00521-021-05823-z
    [21] GUO Q, ZHAO Z, SHEN P, et al. Adaptive optimal control based on driving style recognition for plug-in hybrid electric vehicle[J]. Energy, 2019, 186:115824.doi:10.1016/j.energy.2019.07.154
    [22] LANGARI R, WON J S, Intelligent energy management agent for a parallel hybrid vehicle - Part I: System architecture and design of the driving situation identification process[J]. IEEE Transactions on Vehicular Technology, 2005, 54(3): 925 − 934.
    [23] 秦大同, 杨官龙, 胡明辉, 等. 基于驾驶意图的插电式混合动力汽车能量管理策略[J]. 吉林大学学报(工学版), 2015, 45(6):1743 − 1750.

    QIN Datong, YANG Guanlong, HU Minghui, et al. Energy management strategy of plug-in hybrid electric system based on driving intention[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(6):1743 − 1750. (in Chinese)
    [24] QI W. Fuzzy control strategy of pure electric vehicle based on driving intention recognition.[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(4):5131 − 5139.
    [25] XU S, ZHAO X, YANG N, et al. Control strategy of braking energy recovery for range-extended electric commercial vehicles by considering braking intention recognition and electopneumatic braking compensation[J]. Energy Technology, 2020, 8(9):2000407.doi:10.1002/ente.202000407
    [26] ZHANG Q, FU X. A neural network fuzzy energy management strategy for hybrid electric vehicles based on driving cycle recognition.[J]. Applied Sciences, 2020, 10(2):696.doi:10.3390/app10020696
    [27] 连静, 常静, 李琳辉, 等. 基于模糊在线识别的并联混合动力客车自适应控制策略[J]. bob手机在线登陆学报, 2016, 36(3):264 − 270.

    LIAN Jing, CHANG Jing, LI Huilin, et al. Adaptive control strategy based on inline fuzzy recognition for parallel hybrid electric vehicle[J]. Transactions of Beijing Institute of Technology, 2016, 36(3):264 − 270. (in Chinese)
    [28] LI P, JIAO X, LI Y. Adaptive real-time energy management control strategy based on fuzzy inference system for plug-in hybrid electric vehicles[J]. Control Engineering Practice, 2021, 107:104703.doi:10.1016/j.conengprac.2020.104703
    [29] PENG H, XIE J. Energy management strategy for plug-in hybrid electric vehicles based on genetic-fuzzy control strategy[C]//Proceedings of 2017 International Conference on Computer Technology, Electronics and Communication (ICCTEC). [S. l.]: IEEE, 2017: 1053-1056.
    [30] ZHANG R, TAO J. GA-based fuzzy energy management system for FC/SC-powered HEV considering H 2 consumption and load variation[J]. IEEE Transactions on Fuzzy Systems, 2017, 26(4):1833 − 1843.
    [31] WU Jingda, HE Hongwen, PENG Jiankun, et al. Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus[J]. Applied Energy, 2018, 222:799 − 811.doi:10.1016/j.apenergy.2018.03.104
    [32] ATUAHENE S, BAO Y, ZIGGAH Y, et al. Short-term electric power forecasting using dual-stage hierarchical wavelet-Particle swarm optimization-adaptive neuro-fuzzy inference system PSO-ANFIS approach based on climate change[J]. Energies, 2018, 11(10):2822.doi:10.3390/en11102822
    [33] SCHMID R, BURGER J, BAJCINCA N. A comparison of PMP-based energy management strategies for plug-in-hybrid electric vehicles[J]. IFAC-PapersOnLine, 2019, 52(5):592 − 597.doi:10.1016/j.ifacol.2019.09.094
    [34] 吴铁洲, 王越洋, 许玉姗, 等. 基于PMP算法的HEV能量优化控制策略[J]. 自动化学报, 2018, 44(11):2092 − 2102.

    WU Tiezhou, WANG Yueyang, XU Yushan, et al. Energy optimal control strategy of HEV with PMP algorithm[J]. Acta Automatica Sinica, 2018, 44(11):2092 − 2102. (in Chinese)
    [35] 张承宁, 周维, 李军求, 等. 基于极小值原理的增程式电动车辆在线能量管理控制策略[J]. bob手机在线登陆学报, 2015, 35(9):931 − 935.

    ZHANG Chengning, ZHOU Wei, LI Junqiu, et al. An onlin energy management strategy for extended range electric vehicles based on pontryagin ’s minimum principle[J]. Transactions of Beijing Institute of Technology, 2015, 35(9):931 − 935. (in Chinese)
    [36] BERNARD J, DELPRAT S, BUECHI F, et al. Global Optimisation in the power management of a Fuel Cell Hybrid Vehicle (FCHV)[C]//Proceedings of 2006 IEEE vehicle power and propulsion conference. [S. l.]: IEEE, 2006: 1 − 6.
    [37] SONG K, WAN X, LI F, et al. Pontryagin ’s minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability[J]. Energy, 2020, 205:118064.doi:10.1016/j.energy.2020.118064
    [38] XU L, OUYANG M, LI J, et al. Application of pontryagin's minimal principle to the energy management strategy of plugin fuel cell electric vehicles[J]. International Journal of Hydrogen Energy, 2013, 38(24):10104 − 10115.doi:10.1016/j.ijhydene.2013.05.125
    [39] DU J, ZHANG X, WANG T, et al. Battery degradation minimization oriented energy management strategy for plug-in hybrid electric bus with multi-energy storage system[J]. Energy, 2018, 165:153 − 163.
    [40] YU H, LIU L, BAI B, et al. A dynamic programming-based control strategy with optimum efficiency of hybrid energy storage system for HEV[J]. Advanced Materials Research, 2015, 1092:165 − 168.
    [41] SANTUCCI A, SORNIOTTO A, LEKAKOU C. Power split strategies for hybrid energy storage systems for vehicular applications[J]. Journal of Power Sources, 2014, 258:395 − 407.doi:10.1016/j.jpowsour.2014.01.118
    [42] HE H, TANG H, WANG X. Global optimal energy management strategy research for a plug-in series-parallel hybrid electric bus by using dynamic programming[J]. Mathematical Problems in Engineering, 2013, 2013:708261.
    [43] RIBAU J, VIEGAS R, ANGELINO A, et al. A new offline optimization approach for designing a fuel cell hybrid bus[J]. Transportation Research Part C:Emerging Technologies, 2014, 42:14 − 27.doi:10.1016/j.trc.2014.02.012
    [44] PENG J, HE H, XIONG R. Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming[J]. Applied Energy, 2017, 185:1633 − 1643.doi:10.1016/j.apenergy.2015.12.031
    [45] ZHANG S, XIONG R, SUN F. Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system[J]. Applied Energy, 2017, 185:1654 − 1662.doi:10.1016/j.apenergy.2015.12.035
    [46] BORHAN, H, VAHIDI A, PHILLIPS A, et al. MPC-based energy management of a power-split hybrid electric vehicle[J]. IEEE Transactions on Control Systems Technology, 2012, 20(3):593 − 603.
    [47] ZENG X, WANG J. A parallel hybrid electric vehicle energy management strategy using stochastic model predictive control with road grade preview[J]. IEEE Transactions on Control Systems Technology, 2015, 23(6):2416 − 2423.doi:10.1109/TCST.2015.2409235
    [48] DI C S, BERNARDINI D, BEMPORAD A, et al. Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management[J]. IEEE Transactions on Control Systems Technology, 2013, 22(3):1018 − 1031.
    [49] XIANG C, DING F, WANG W, et al. Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control[J]. Applied Energy, 2017, 189:640 − 653.doi:10.1016/j.apenergy.2016.12.056
    [50] ZHANG S, LUO Y, WANG J, et al. Predictive energy management strategy for fully electric vehicles based on preceding vehicle movement[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11):3049 − 3060.doi:10.1109/TITS.2017.2672542
    [51] DENG T, HAN H, LUO J. Improved ECMS energy management control of HEVs based on DP algorithm[J]. China Mechanical Engineering, 2018, 29(3):326 − 332.
    [52] 司远, 钱立军, 邱利宏, 等. 基于等效油耗最小的四驱混合动力汽车能量管理[J]. 中国机械工程, 2017, 28(9):1112 − 1117.doi:10.3969/j.issn.1004-132X.2017.09.019

    SI Yuan, QIAN Lijun, QIU Lihong, et al. Energy management of a 4WD hybrid electric vehicle based on ECMS[J]. China Mechanical Engineering, 2017, 28(9):1112 − 1117. (in Chinese)doi:10.3969/j.issn.1004-132X.2017.09.019
    [53] LI L, HUANG H, LIAN J, et al. Research of ant colony optimized adaptive control strategy for hybrid electric vehicle[J]. Mathematical Problems in Engineering, 2014, 2014:239130.
    [54] VAN K, DE B, SERRARENS A, et al. Optimal energy management in hybrid electric trucks using route information[J]. Oil & Gas Science and Technology–Revue de l’Institut Franç ais du Pétrole, 2010, 65(1):103 − 113.
    [55] PEI D, LEAMY M J. Dynamic programming-informed equivalent cost minimization control strategies for hybrid-electric vehicles[J]. Journal of Dynamic Systems, Measurement, and Control, 2013, 135(5):051013.doi:10.1115/1.4024788
    [56] BOUWMAN K R, PHAM T H, Wilkins S, et al. Predictive energy management strategy including traffic flow data for hybrid electric vehicles[J]. IFAC-PapersOnLine, 2017, 50(1):10046 − 10051.doi:10.1016/j.ifacol.2017.08.1775
    [57] SUN C, HU X, MOURA S, et al. Velocity predictors for predictive energy management in hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2014, 23(3):1197 − 1204.
    [58] WU J, ZHANG C, CUI N. Fuzzy energy management strategy for a hybrid electric vehicle based on driving cycle recognition[J]. International journal of automotive technology, 2012, 13(7):1159 − 1167.doi:10.1007/s12239-012-0119-z
    [59] GRELLE C, IPPOLITO L, LOIA V, et al. Agent-based architecture for designing hybrid control systems[J]. Information Sciences, 2006, 176(9):1103 − 1130.doi:10.1016/j.ins.2005.07.018
    [60] MONTAZERI G, FOTOUHI A, NADERPOUR A. Driving patterns clustering based on driving features analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2011, 225(6):1301 − 1317.doi:10.1177/2041298310392599
    [61] FINESSO R, SPESSA E, VENDITTI M. An unsupervised machine-learning technique for the definition of a rule-based control strategy in a complex HEV[J]. SAE International Journal of Alternative Powertrains, 2016, 5(2):308 − 327.doi:10.4271/2016-01-1243
    [62] VENDITTI M. Analysis of the performance of different machine learning techniques for the definition of rule-based control strategies in a parallel HEV[J]. Energy Procedia, 2016, 101:685 − 692.doi:10.1016/j.egypro.2016.11.087
    [63] HU X, LIU T, QI X, et al. Reinforcement learning for hybrid and plug-in hybrid electric vehicle energy management: recent advances and prospects[J]. IEEE Industrial Electronics Magazine, 2019, 13(3):16 − 25.doi:10.1109/MIE.2019.2913015
    [64] YUE S, WANG Y, XIE Q, et al. Model-free learning-based online management of hybrid electrical energy storage systems in electric vehicles[C]//Proceedings of IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society. [S. l.]: IEEE, 2014: 3142 − 3148.
    [65] FANG Y, SONG C, XIA B, et al. An energy management strategy for hybrid electric bus based on reinforcement learning[C]//Proceedings of The 27th Chinese control and decision conference (2015 CCDC). [S. l.]: IEEE, 2015: 4973 − 4977.
    [66] QI X, WU G, BORIBOONSOMSIN K, et al. Data-driven reinforcement learning–based real-time energy management system for plug-in hybrid electric vehicles[J]. Transportation Research Record, 2016, 2572(1):1 − 8.doi:10.3141/2572-01
    [67] LIU T, ZOU Y, LIU D, et al. Reinforcement learning of adaptive energy management with transition probability for a hybrid electric tracked vehicle[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12):7837 − 7846.doi:10.1109/TIE.2015.2475419
    [68] LIU T, ZOU Y, LIU D, et al. Reinforcement learning–based energy management strategy for a hybrid electric tracked vehicle[J]. Energies, 2015, 8(7):7243 − 7260.doi:10.3390/en8077243
    [69] ZOU Y, LIU T, LIU D, et al. Reinforcement learning-based real-time energy management for a hybrid tracked vehicle[J]. Applied energy, 2016, 171:372 − 382.doi:10.1016/j.apenergy.2016.03.082
    [70] WU J, HE H, PENG J, et al. Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus[J]. Applied energy, 2018, 222:799 − 811.doi:10.1109/TVT.2019.2926472
    [71] LI Y, HE H, PENG J, et al. Deep reinforcement learning-based energy management for a series hybrid electric vehicle enabled by history cumulative trip information[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8):7416 − 7430.
    [72] WANG Y, TAN H, WU Y, et al. Hybrid electric vehicle energy management with computer vision and deep reinforcement learning[J]. IEEE Transactions on Industrial Informatics, 2020, 17(6):3857 − 3868.
  • 加载中
图(12)
计量
  • 文章访问数:433
  • HTML全文浏览量:105
  • PDF下载量:93
  • 被引次数:0
出版历程
  • 收稿日期:2022-07-13

目录

    /

      返回文章
      返回
        Baidu
        map