中文核心期刊

高校精品期刊Ei收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TC4钛合金钻杆在腐蚀条件下的力学性能研究

安晨,程智,黄旭,沙爱学,李荣,仇明,段梦兰

downloadPDF
安晨, 程智, 黄旭, 沙爱学, 李荣, 仇明, 段梦兰. TC4钛合金钻杆在腐蚀条件下的力学性能研究[J]. bob手机在线登陆学报自然版, 2022, 42(2): 128-134. doi: 10.15918/j.tbit1001-0645.2020.214
引用本文: 安晨, 程智, 黄旭, 沙爱学, 李荣, 仇明, 段梦兰. TC4钛合金钻杆在腐蚀条件下的力学性能研究[J]. bob手机在线登陆学报自然版, 2022, 42(2): 128-134.doi:10.15918/j.tbit1001-0645.2020.214
AN Chen, CHENG Zhi, HUANG Xu, SHA Aixue, LI Rong, QIU Ming, DUAN Menglan. Evaluation of Mechanical Properties of TC4 Titanium Alloy Drill Pipe in Corrosive Environment[J]. Transactions of Beijing institute of Technology, 2022, 42(2): 128-134. doi: 10.15918/j.tbit1001-0645.2020.214
Citation: AN Chen, CHENG Zhi, HUANG Xu, SHA Aixue, LI Rong, QIU Ming, DUAN Menglan. Evaluation of Mechanical Properties of TC4 Titanium Alloy Drill Pipe in Corrosive Environment[J].Transactions of Beijing institute of Technology, 2022, 42(2): 128-134.doi:10.15918/j.tbit1001-0645.2020.214

TC4钛合金钻杆在腐蚀条件下的力学性能研究

doi:10.15918/j.tbit1001-0645.2020.214
基金项目:

重点研发计划资助项目(2016YFC0303700);中国石油大学(北京)校级基金资助项目(ZX20200136)

详细信息
    作者简介:

    安晨(1981—),男,博士,副教授,博士生导师,E-mail: anchen@cup.edu.cn

  • 中图分类号:TE924

Evaluation of Mechanical Properties of TC4 Titanium Alloy Drill Pipe in Corrosive Environment

  • 摘要:为研究适用于腐蚀环境下的钛合金钻杆材料,参照NACE和GB规范中的腐蚀要求和试验标准,首先对TC4钛合金试件进行腐蚀处理(设置未经腐蚀处理的对照组),然后进行拉伸、冲击和硬度试验,研究其在腐蚀条件下的综合力学性能. 结果表明:在NaCl、H 2S、CO 2、205 ℃条件下,TC4钛合金的拉伸性能下降不超过10%,冲击性能变化仅为0.33%,硬度下降3.21%,说明TC4钛合金具有出色的耐腐蚀性,在腐蚀条件下能够保持良好的综合力学性能. 以API规范中对钢钻杆材料的力学性能要求为指标,腐蚀处理后TC4钛合金的力学性能表现为屈服强度、拉伸强度及伸长率均不低于X级钢;冲击吸收功高于API对钢钻杆要求的62%(20 ℃);硬度超过G级钢约37%,接近S级钢;故可将TC4钛合金应用于腐蚀性油气井钻杆中以避免或减轻钻杆腐蚀失效.

  • [1] STEPHEN H, CHIANELLI R. Factors that will influence oil and gas supply and demand in the 21st century[J]. MRS Bulletin, 2008,33:317-323.
    [2] 张益畅, 孙艳超, 黄胜铭, 等. 海洋石油开发进展研究[J]. 内蒙古石油化工, 2019,45(6):116-118. ZHANG Yichang, SUN Yanchao, HUANG Shengming, et al. Research on the progress of offshore oil development[J]. Inner Mongolia Petrochemical Industry, 2019,45(6):116-118. (in Chinese).
    [3] 常毓文, 王作乾, 刘保磊, 等. 全球油气开发特征与启示[J]. 国际石油经济, 2018,26(12):58-66. CHANG Yuwen, WANG Zuoqian, LIU Baolei, et al. Characteristics and inspiration of global oil and gas development[J]. International Petroleum Economics, 2018,26(12):58-66. (in Chinese).
    [4] 邢娜, 何立波, 高真凤, 等. 高酸性腐蚀油气田用镍基合金油套管开发现状[J]. 上海金属, 2013,35(4):63-66. XING Na, HE Libo, GAO Zhenfeng, et al. Development status of nickel-based alloy tubing and casing for high acid corrosion oil and gas fields[J]. Shanghai Metal, 2013,35(4):63-66. (in Chinese).
    [5] IANNUZI M, BARNOUSH A, JOHNSEN R. Materials and corrosion trends in offshore and subsea oil and gas production[J]. npj Materials Degradation, 2017,1(1):2-9.
    [6] OLAJIRE A. Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors-a review[J]. Journal of Molecular Liquids, 2017,248:775-808.
    [7] 朱丽娟, 刘永刚, 李方坡, 等. G105钢制钻杆腐蚀失效的原因[J]. 腐蚀与防护, 2016,37(9):775-780. ZHU Lijuan, LIU Yonggang, LI Fangpo, et al. Causes of corrosion failure of G105 steel drill pipe[J]. Corrosion and Protection, 2016,37(9):775-780. (in Chinese).
    [8] 王显林, 陈长青, 张德旺, 等. Φ127 mm G105型钻杆腐蚀失效分析[J]. 石油矿场机械, 2015,44(10):24-27. WANG Xianlin, CHEN Changqing, ZHANG Dewang, et al. Corrosion failure analysis of Φ127 mm G105 drill pipe[J]. Petroleum Field Machinery, 2015,44(10):24-27. (in Chinese).
    [9] 李平全, 宋治. 钻杆腐蚀疲劳失效及其预防[J]. 石油钻采工艺, 1990,12(2):39-43. LI Pingquan, SONG Zhi. Drill pipe corrosion fatigue failure and its prevention[J]. Oil Drilling& Production Technology, 1990,12(2):39-43. (in Chinese).
    [10] 刘光磊. 石油钻柱疲劳腐蚀失效机理及防治措施研究[D]. 北京: 中国石油大学, 2007. LIU Guanglei. Research on fatigue corrosion failure mechanism and prevention measures of petroleum drill strings[D]. Beijing: China University of Petroleum, 2007. (in Chinese).
    [11] 张毅, 赵鹏. Φ127 mm×9. 19 mm IEU S-135钻杆腐蚀失效分析[J]. 钢管, 2003,32(4):10-16. ZHANG Yi, ZHAO Peng. Corrosion failure analysis of Φ127 mm×9. 19 mm IEU S-135 drill pipe[J]. Steel Pipe, 2003,32(4):10-16. (in Chinese).
    [12] BAXTER C, PILLAI S, HUTT G. Advances in titanium risers for FPSO's[C]//Proceedings of Offshore Technology Conference. Houston, Texas: [s. n. ], 1997.
    [13] SCHUTZ R W, WATKINS H B. Recent developments in titanium alloy application in the energy industry[J]. Materials Ence & Engineering A, 1998,243(1):305-315.
    [14] HILL T H, CHANDLER R B. Field curves for critical buckling loads in curving wellbores[C]//Proceedings of SPE/IADC Drilling Conference. Dallas, Texas: [s. n. ], 1998.
    [15] 袁文义, 张泉海. 国外钛合金钻杆的研究进展[J]. 新疆石油科技, 2006,16(3):13-15. YUAN Wenyi, ZHANG Quanhai. Research progress of titanium alloy drill pipes abroad[J]. Xinjiang Petroleum Science and Technology, 2006,16(3):13-15. (in Chinese).
    [16] SMITH J E, CHANDLER R B, Patrick B L. Titanium drill pipe for ultra-deep and deep directional drilling[C]//Proceedings of SPE/IADC Drilling Conference. Amsterdam, Netherlands: [s. n. ], 2001.
    [17] LIU W, BLAWERT C, ZHELUDKEVICH M L, et al. Effects of graphene nanosheets on the ceramic coatings formed on Ti6Al4V alloy drill pipe by plasma electrolytic oxidation[J]. Journal of Alloys and Compounds, 2019,3(6):996-1007.
    [18] 张业勤, 丁小明, 黄利军, 等. 差示扫描量热法测定钛合金的相变温度[J]. 科技创新与应用, 2020(13):139-141. ZHANG Yeqin, DING Xiaoming, HUANG Lijun, et al. Determination of phase transition temperature of titanium alloy by differential scanning calorimetry[J]. Science & Technology Innovation and Application, 2020(13):139-141. (in Chinese).
    [19] 张业勤, 颜孟奇, 齐立春, 等. TC27钛合金β转变温度的测定与分析[J]. 分析仪器, 2020(3):88-92. ZHANG Yeqin, YAN Mengqi, QI Lichun, et al. Determination and analysis on the phase transformation temperature of TC27 titanium alloy[J]. Analytical Instrumention, 2020(3):88-92. (in Chinese).
    [20] 张业勤, 齐立春, 黄利军, 等. TC27钛合金超音速火焰喷涂WC-17Co耐磨涂层工艺研究[J]. 科技创新与应用, 2020(17):120-121. ZHANG Yeqin, QI Lichun, HUANG Lijun, et al. Research on WC-17Co wear-resistant coating process of TC27 titanium alloy by supersonic flame spraying[J]. Technological Innovation and Application, 2020(17):120-121. (in Chinese).
    [21] 陈孝文, 李仁仆, 张德芬, 等. 氧化时间对钛合金钻杆微弧氧化膜层结构和性能的影响[J]. 材料导报, 2017,31(增刊1):498-501. CHEN Xiaowen, LI Renpu, ZHANG Defen, et al. Effect of oxidation time on structure and properties of micro-arc oxidation film on titanium alloy drill pipe[J]. Materials Review:Nano and New Materials Special, 2017,31(suppl 1):498-501. (in Chinese).
    [22] 王永夏, 张传涛, 张蓓. 新型钛合金和铝合金钻杆结构安全性分析[J]. 石油矿场机械, 2010,39(12):31-33. WANG Yongxia, ZHANG Chuantao, ZHANG Bei. New type of titanium and aluminum alloy drill pipe of finite element analysis, petroleum field machinery[J]. Oil Field Equipment, 2010,39(12):31-33. (in Chinese).
    [23] 邵晖, 赵永庆, 曾卫东, 等.α+β钛合金微观组织对强韧性的影响概述[J]. 稀有金属材料与工程, 2012,41(7):1313-1316. SHAO Hui, ZHAO Yongqing, ZENG Weidong, et al. Overview of the influence ofα+βtitanium alloy microstructure on strength and toughness[J]. Rare Metal Materials and Engineering, 2012,41(7):1313-1316. (in Chinese).
    [24] 张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化学工业出版社, 2005. ZHANG Xiyan, ZHAO Yongqing, BAI Chenguang. Titanium alloys and applications[M]. Beijing: Chemical Industry Press. 2005. (in Chinese).
  • 加载中
图(1)
计量
  • 文章访问数:493
  • HTML全文浏览量:57
  • PDF下载量:75
  • 被引次数:0
出版历程
  • 收稿日期:2020-11-21

目录

    /

      返回文章
      返回
        Baidu
        map