中文核心期刊

高校精品期刊Ei收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多通道并联无线岸电系统扰动抑制技术研究

孙盼,吴旭升,蔡进,杨刚,周航,谢海浪,张筱琛

downloadPDF
孙盼, 吴旭升, 蔡进, 杨刚, 周航, 谢海浪, 张筱琛. 多通道并联无线岸电系统扰动抑制技术研究[J]. bob手机在线登陆学报自然版, 2023, 43(2): 170-177. doi: 10.15918/j.tbit1001-0645.2022.043
引用本文: 孙盼, 吴旭升, 蔡进, 杨刚, 周航, 谢海浪, 张筱琛. 多通道并联无线岸电系统扰动抑制技术研究[J]. bob手机在线登陆学报自然版, 2023, 43(2): 170-177.doi:10.15918/j.tbit1001-0645.2022.043
SUN Pan, WU Xusheng, CAI Jin, YANG Gang, ZHOU Hang, XIE Hailang, ZHANG Xiaochen. Multi-Channel Wireless Shore Power System and Ship-Shore Cooperative Grid Connection Control Research[J]. Transactions of Beijing institute of Technology, 2023, 43(2): 170-177. doi: 10.15918/j.tbit1001-0645.2022.043
Citation: SUN Pan, WU Xusheng, CAI Jin, YANG Gang, ZHOU Hang, XIE Hailang, ZHANG Xiaochen. Multi-Channel Wireless Shore Power System and Ship-Shore Cooperative Grid Connection Control Research[J].Transactions of Beijing institute of Technology, 2023, 43(2): 170-177.doi:10.15918/j.tbit1001-0645.2022.043

多通道并联无线岸电系统扰动抑制技术研究

doi:10.15918/j.tbit1001-0645.2022.043
基金项目:国家自然科学基金资助项目(52007195)
详细信息
    作者简介:

    孙盼(1986—),男,助理研究员,E-mail:chinasunpan@163.com

    通讯作者:

    蔡进(1993—),男,助理研究员,E-mail:caijincj@126.com

  • 中图分类号:TM724

Multi-Channel Wireless Shore Power System and Ship-Shore Cooperative Grid Connection Control Research

  • 摘要:输入输出均并联型多通道无线岸电系统可通过模块化叠加实现舰船岸电大功率传输,解决单通道功率受限问题. 但在模块生产、安装及运行过程中难免产生参数差异和扰动,进而将引起岸电输出电压不稳定,影响无线岸电系统可靠运行. 为此,首先给出多通道并联无线岸电系统电路拓扑,建立了以逆变器移相角为输入、目标负载功率为输出的多通道并联无线岸电系统模型,采用能量−相角的方法降低系统阶数,建立系统小信号模型,基于Trapezoidal阶梯双线性逼近法设计了系统控制器,分别研究通道耦合器参数差异、系统直流输入电压扰动、负载扰动三种工况,通过Matlab仿真和实验验证了参数差异及参数扰动下控制器效果,结果表明控制器在三种扰动工况下均有较好的控制效果,保证了多通道岸电系统的稳定运行,该技术对大功率无线岸电系统的设计与应用提供了技术支撑.

  • 图 1无线岸电系统拓扑示意图

    Figure 1.wireless shore power system topology schematic

    图 2理想情况下采用PI控制器的系统性能

    Figure 2.The ideal system performance with a PI controller

    图 3无线岸电系统Matlab仿真模型

    Figure 3.Matlab simulation model of wireless shore power system

    图 4通道参数差异下负载电压调节效果

    Figure 4.The effect of load voltage regulation under the difference of channel parameters

    图 5仿真系统负载突变扰动调节

    Figure 5.Simulation system load sudden disturbance adjustment

    图 6岸电电压突降扰动调节

    Figure 6.Shore voltage dip disturbance regulation

    图 7功率20 kW输出电压曲线

    Figure 7.Output voltage curve when the power is 20 kW

    图 8负载突变输出电压变化曲线

    Figure 8.Load mutation output voltage curve

    表 1三通道无线电能传输系统仿真参数

    Table 1.Three-channel wireless power transfer system simulation parameters

    仿真参数 数值 仿真参数 数值
    直流输入电压${V_{\text{I}}}$/V 500 互感系数k1 0.3
    谐振线圈电感LS1/μH 110 互感系数k2 0.3
    谐振线圈电感LS2/μH 110 互感系数k2 0.3
    谐振线圈电感LS3/μH 110 负载RL 50
    谐振线圈电感LP1/μH 110 自谐振频率f0/kHz 86
    谐振线圈电感LP2/μH 110 系统运行频率f 1.1
    谐振线圈电感LP3/μH 110 线圈寄生阻抗r 0.039
    稳压电容大小C/μf 500
    下载: 导出CSV

    表 2某通道参数变化

    Table 2.A channel parameter change

    符号 原参数值 现参数值
    L1/μH 110 105
    L2/μH 110 105
    C1/μF 21.4 22.5
    C2/μF 25.4 26.3
    R1 0.039 0.06
    R2 0.039 0.06
    M/μH 33 35
    下载: 导出CSV
  • [1] 吴旭升, 孙盼, 杨深钦, 等. 水下无线电能传输技术及应用研究综述[J]. 电工技术学报, 2019, 34(8): 1559 − 1568.

    WU Xusheng, SUN Pan, YANG Shenqin, et al. Review on underwater wireless power transfer technology and its application[J]. Transactions of China Electro Technical Society, 2019, 34(8): 1559 − 1568. (in Chinese)
    [2] GUIDI G, SUUL J A, JENSET F, et al. Wireless charging for ships: high-power inductive charging for battery electric and plug-in hybrid vessels[J]. IEEE Electrification Magazine, 2017, 5(3): 22 − 32.doi:10.1109/MELE.2017.2718829
    [3] 马伟明. 舰船综合电力系统中的机电能量转换技术[J]. 电气工程学报, 2015(4): 8 − 16.

    MA Weiming. Electromechanical power conversion technologies in vessel integrated power system[J]. Journal of Electrical Engineering, 2015(4): 8 − 16. (in Chinese)
    [4] 姜鹏, 孙盼, 彭威. 新型舰船岸电系统研究[J]. 船电技术, 2016, 36(2): 3 − 9.

    JIANG Peng, SUN Pan, PENG Wei. A new shore power system of a warship[J]. Marine Electric & Electronic Engineering, 2016, 36(2): 3 − 9. (in Chinese)
    [5] DENG Q, SUN P, HU W, et al. Modular parallel multi-inverter system for high-power inductive power transfer[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9422 − 9434.doi:10.1109/TPEL.2019.2891064
    [6] 安慧林, 刘国强, 李艳红, 等. 宽频磁耦合谐振式无线电能传输系统谐振器设计[J]. bob手机在线登陆学报, 2019, 39(10): 1069 − 1074+1080.

    AN Huilin, LIU Guoqiang, LI Yanhong, et al. Resonator designer of wireless power transfer system with broadband magnetic coupling property[J]. Transactions of Beijing Institute of Technology, 2019, 39(10): 1069 − 1074+1080. (in Chinese)
    [7] 高嵩, 国岩, 李新飞, 等. 动力定位船矢量推进器回转动力学响应分析[J]. bob手机在线登陆学报, 2020, 40(11): 1182 − 1189.

    GAO Song, GUO Yan, LI Xinfei, et al. Dynamic response characteristics of hydraulic rotary system for azimuth thruster of dynamic positioning ship[J]. Transactions of Beijing Institute of Technology, 2020, 40(11): 1182 − 1189. (in Chinese)
    [8] DENG Q, LIU J, ZARKOWSKI D C, et al. An inductive power transfer system supplied by a multiphase parallel inverter[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7039 − 7048.doi:10.1109/TIE.2017.2686351
    [9] 麦瑞坤, 陆立文, 李勇. 两逆变器并联IPT系统的环流消除方法研究[J]. 电工技术学报, 2016, 31(3): 8 − 15.doi:10.3969/j.issn.1000-6753.2016.03.002

    MAI Ruikun, LU Liwen, LI Yong. Circulating current elimination of parallel dual-inverter IPT systems[J]. Transactions of China Electro technical Society, 2016, 31(3): 8 − 15. (in Chinese)doi:10.3969/j.issn.1000-6753.2016.03.002
    [10] YONG L, MAI R, LU L, et al. Active and reactive currents decomposition-based control of angle and magnitude of current for a parallel multiinverter IPT System[J]. IEEE Transactions on Power Electronics, 2016, 32(2): 1602 − 1614.
    [11] HAO H, COVIC G A, BOYS J T. A parallel topology for inductive power transfer power supplies[J]. IEEE Transactions on Power Electronics, 2013, 29(3): 1140 − 1151.
    [12] HU H, CAI T, DUAN S, et al. A parallel topology for modularized IPT systems[C]//Proceedings of 2019 IEEE Energy Conversion Congress and Exposition (ECCE). [S. l.]: IEEE, 2019.
    [13] LI Y, HU J, LI X F, et al. Efficiency analysis and optimization control for input-parallel output-series wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2020, 1(99): 1074 − 1085.
    [14] 强浩, 黄学良, 谭林林, 等. 基于动态调谐实现感应耦合无线电能传输系统的最大功率传输[J]. 中国科学:技术科学, 2012, 42(7): 830 − 837.

    QIANG Hao, HUANG Xueliang, TAN Linin, et al. Achieving maximum power ttransfer of inductively coupled wireless power transfer system based on dynamic tuning control[J]. Sci China Tech Sci, 2012, 42(7): 830 − 837. (in Chinese)
    [15] 李阳. 大功率谐振式无线电能传输方法与实验研究[D]. 天津: 河北工业大学, 2012.

    LI Yang. High-power resonant wireless power transmission method and experimental research[D]. Tianjin: Hebei University of Technology , 2012. (in Chinese)
    [16] 周诗杰. 无线电能传输系统能量建模及其应用[D]. 重庆: 重庆大学, 2012.

    ZHOU shijie. Energy modeling of wireless power transfer system and its application[D]. Chongqing: Chongqing University, 2012. (in Chinese)
    [17] 王裕, 程志江, 陈星志, 等. 基于线性自抗扰控制的无线电能传输装置设计[J]. 高电压技术, 2021: 1 − 10.

    WANG Yu, CHENG Zhijiang, CHEN Xingzhi, et al. Design of wireless power transmission device based on linear active disturbance rejection control[J]. High Voltage Technology, 2021: 1 − 10. (in Chinese)
    [18] LI Y, MAI R, LU L, et al. Analysis and transmitter currents decomposition based control for multiple overlapped transmitters based WPT systems considering cross couplings[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 1829 − 1842.doi:10.1109/TPEL.2017.2690061
  • 加载中
图(8)/ 表(2)
计量
  • 文章访问数:104
  • HTML全文浏览量:44
  • PDF下载量:11
  • 被引次数:0
出版历程
  • 收稿日期:2022-03-02
  • 录用日期:2022-03-02

目录

    /

      返回文章
      返回
        Baidu
        map