中文核心期刊

高校精品期刊Ei收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高压下N2和CO2对CH4/C2H6/C3H8混合气抑爆效果研究

刘振翼,李嘉璐,李鹏亮,李睿,李明智,赵耀,任远

downloadPDF
刘振翼, 李嘉璐, 李鹏亮, 李睿, 李明智, 赵耀, 任远. 高温高压下N2和CO2对CH4/C2H6/C3H8混合气抑爆效果研究[J]. bob手机在线登陆学报自然版, 2023, 43(2): 111-117. doi: 10.15918/j.tbit1001-0645.2022.048
引用本文: 刘振翼, 李嘉璐, 李鹏亮, 李睿, 李明智, 赵耀, 任远. 高温高压下N2和CO2对CH4/C2H6/C3H8混合气抑爆效果研究[J]. bob手机在线登陆学报自然版, 2023, 43(2): 111-117.doi:10.15918/j.tbit1001-0645.2022.048
LIU Zhenyi, LI Jialu, LI Pengliang, LI Rui, LI Mingzhi, ZHAO Yao, REN Yuan. Study on the Explosion Suppression Effect of N2 and CO2 on CH4/C2H6/C3H8 Mixtures at High Temperature and High Pressure[J]. Transactions of Beijing institute of Technology, 2023, 43(2): 111-117. doi: 10.15918/j.tbit1001-0645.2022.048
Citation: LIU Zhenyi, LI Jialu, LI Pengliang, LI Rui, LI Mingzhi, ZHAO Yao, REN Yuan. Study on the Explosion Suppression Effect of N2and CO2on CH4/C2H6/C3H8Mixtures at High Temperature and High Pressure[J].Transactions of Beijing institute of Technology, 2023, 43(2): 111-117.doi:10.15918/j.tbit1001-0645.2022.048

高温高压下N2和CO2对CH4/C2H6/C3H8混合气抑爆效果研究

doi:10.15918/j.tbit1001-0645.2022.048
基金项目:国家重点研发计划资助项目(2022YFC3006301);爆炸科学与技术国家重点实验室开放基金资助项目( YBKT22-01)
详细信息
    作者简介:

    刘振翼(1975—),男,副教授,E-mail:zhenyiliu@bit.edu.cn

    通讯作者:

    李嘉璐(1997—),女,硕士,E-mail:3120190289@bit.edu.cn

  • 中图分类号:X932

Study on the Explosion Suppression Effect of N2and CO2on CH4/C2H6/C3H8Mixtures at High Temperature and High Pressure

  • 摘要:油田伴生气经常会发生燃爆事故,为提升采油过程的安全性,需研究N 2与CO 2在井筒高温高压条件下的抑爆效果. 目前对于高温高压条件下固定可燃气体积分数,不同体积分数N 2和CO 2对爆炸特性影响的研究较少. 对40 °C,初始压力0.5、1.0、2.0 MPa,不同N 2和CO 2体积分数下CH 4/C 2H 6/C 3H 8混合气到达最大爆炸超压的时间、最大爆炸超压和爆燃指数 K G进行了相关研究,分析了不同初始压力和2种惰性气体对爆炸特性参数的影响. 试验结果表明:不同初始压力下N 2和CO 2各自的惰化机理相同;CO 2的惰化效果优于N 2且存在最优点,该点之前CO 2的惰化效果与N 2相比优势逐渐增强,由化学作用占主导地位,该点之后化学作用已达到最大效果,因此CO 2的惰化效果虽仍强于N 2,优势却逐渐减小.

  • 图 1可燃气体爆炸特性试验装置

    Figure 1.Flammable gas explosion characteristics experimental device

    图 2可燃气体爆炸特性试验装置实物图

    Figure 2.Physical map of the experimental device for the explosive characteristics of combustible gases

    图 340 °C、0.5 MPa及不同N2体积分数下爆炸超压随时间的变化

    Figure 3.Variation curve of explosion overpressure with time at 40 °C, 0.5 MPa and different N2volume fraction

    图 440 °C、1.0 MPa及不同N2体积分数下爆炸超压随时间的变化

    Figure 4.Variation curve of explosion overpressure with time at 40 °C, 1.0 MPa and different N2volume fraction

    图 540 °C、2.0 MPa及不同N2体积分数下爆炸超压随时间的变化

    Figure 5.Variation curve of explosion overpressure with time at 40 °C,2.0 MPa and different N2volume fraction

    图 640 °C、0.5 MPa及不同CO2体积分数下爆炸超压随时间的变化

    Figure 6.Variation curve of explosion overpressure with time at 40 °C, 0.5 MPa and different CO2volume fraction

    图 740 °C、1.0 MPa及不同CO2体积分数下爆炸超压随时间的变化

    Figure 7.Variation curve of explosion overpressure with time at 40 °C, 1.0 MPa and different CO2volume fraction

    图 840 °C、2.0 MPa及不同CO2体积分数下爆炸超压随时间的变化

    Figure 8.Variation curve of explosion overpressure with time at 40 °C, 2.0 MPa and different CO2volume fraction

    图 940 °C时,不同惰性气体体积分数下的最大爆炸超压

    Figure 9.Maximum explosion overpressure with different inert gas volume fraction and temperture of 40 °C

    图 1040 °C时,不同惰性气体体积分数下的爆燃指数KG

    Figure 10.Deflagration indexKGwith different inert gas volume fraction and temperture of 40 °C

    表 1不同惰性气体体积分数下的KG

    Table 1.KGvalue at different inert gas volume fraction

    惰性气体体积分数/% KG/( MPa·dm·s−1)
    0.5 MPa, CO2 0.5 MPa, N2 1.0 MPa, CO2 1.0 MPa, N2 2.0 MPa, CO2 2.0 MPa, N2
    0 60.16 60.16 132.13 132.13 262.35 262.35
    10 51.89 61.68 102.21 86.44 124.94 161.98
    20 13.26 34.43 19.98 64.91 35.66 111.28
    30 4.10 14.58 1.56 27.41 23.73 49.07
    40 0.87 1.02 8.39 2.82 10.03
    下载: 导出CSV
  • [1] 张成博, 李鹏亮, 栾睿智, 等. 注空气采油过程中油田伴生气临界氧体积分数试验研究[J]. 安全与环境学报, 2020, 20(6): 2097 − 2102.

    ZHANG Chengbo, LI Pengliang, LUAN Ruizhi, et al. Experimental test for the limiting oxygen volume fraction of the oilfield gas in the air injection process for oil recovery[J]. Journal of Safety and Environment, 2020, 20(6): 2097 − 2102. (in Chinese)
    [2] 张耀光. 初始温度和初始压力对丙烷爆炸特性参数的影响研究[D]. 青岛: 中国石油大学(华东), 2019.

    ZHANG Yaoguang. Study on the effect of initial temperature and initial pressure on propane explosion characteristics[D]. Qingdao: China University of Petroleum (East China), 2019. (in Chinese)
    [3] 李成兵. N2/CO2/H2O抑制甲烷爆炸化学动力学机理分析[J]. 中国安全科学学报, 2010, 20(8): 88 − 92.doi:10.3969/j.issn.1003-3033.2010.08.014

    LI Chengbing. Chemical kinetics mechanism analysis of N2/CO2/H2O suppressing methane explosion[J]. China Safety Science Journal, 2010, 20(8): 88 − 92. (in Chinese)doi:10.3969/j.issn.1003-3033.2010.08.014
    [4] 周宁, 李海涛, 任常兴, 等. 氮气、二氧化碳对液化石油气的惰化抑爆研究[J]. 消防科学与技术, 2016, 35(6): 733 − 737.doi:10.3969/j.issn.1009-0029.2016.06.001

    ZHOU Ning, LI Haitao, REN Changxing, et al. The liquefied petroleum gas inert gas explosion suppression about of nitrogen and carbon dioxide[J]. Fire Science and Technology, 2016, 35(6): 733 − 737. (in Chinese)doi:10.3969/j.issn.1009-0029.2016.06.001
    [5] 罗振敏, 解超, 王九柱, 等. N2和CO2对液化石油气(LPG)惰化抑爆效能对比分析[J]. 化工进展, 2019, 38(6): 2574 − 2580.

    LUO Zhenmin, XIE Chao, WANG Jiuzhu, et al. Comparative analysis of the inert effects of N2and CO2on LPG explosion[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2574 − 2580. (in Chinese)
    [6] LUO Z, WEI C, WANG T, et al. Effects of N2and CO2dilution on the explosion behavior of liquefied petroleum gas (LPG)-air mixtures[J]. Journal of Hazardous Materials, 2021, 403: 123843.doi:10.1016/j.jhazmat.2020.123843
    [7] 姚福桐. 复杂工况下惰性气体对C2H6/O2爆炸极限的影响研究[D]. 大连: 大连理工大学, 2019.

    YAO Futong. Study on the influence of inert gas on the explosion limits of C2H6/O2mixtures under complex working conditions[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
    [8] BENEDETTO A D, SARLI V D, SALZANO E, et al. Explosion behavior of CH4/O2/N2/CO2and H2/O2/N2/CO2mixtures[J]. International Journal of Hydrogen Energy, 2009, 34(16): 6970 − 6978.doi:10.1016/j.ijhydene.2009.05.120
    [9] ZENG W, MA H, LIANG Y, et al. Experimental and modeling study on effects of N2and CO2on ignition characteristics of methane/air mixture[J]. Journal of Advanced Research, 2015, 6(2): 189 − 201.doi:10.1016/j.jare.2014.01.003
    [10] WANG Z, NI L, LIU X, et al. Effects of N2/CO2on explosion characteristics of methane and air mixture[J]. Journal of Loss Prevention in the Process Industries, 2014, 31: 10 − 15.doi:10.1016/j.jlp.2014.06.004
    [11] MOVILEANU C, RAZUS D, OANCEA D. Additive effects on the rate of pressure rise for ethylene–air deflagrations in closed vessels[J]. Fuel, 2013, 111(9): 194 − 200.
    [12] SHANG R, LI G, WANG Z, et al. Lower flammability limit of H2/CO/air mixtures with N2and CO2dilution at elevated temperatures[J]. International Journal of Hydrogen Energy, 2020, 45(16): 10164 − 10175.doi:10.1016/j.ijhydene.2020.01.247
    [13] FAN T, LI M, LIU Z, et al. Study on associated gas combustion characteristics and inert gas influence rules in air-foam flooding process[J]. Fuel, 2021, 302: 121140.doi:10.1016/j.fuel.2021.121140
    [14] 王燕, 伊宏伟, 孟祥卿, 等. 蒙脱石粉体对瓦斯爆炸特性参数的影响研究[J]. bob手机在线登陆学报, 2019, 39(2): 111 − 117.

    WANG Yan, YI Hongwei, MENG Xiangqing, et al. Investigation of the effect of montmorillonite powders on gas explosion parameters[J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 111 − 117. (in Chinese)
    [15] 柳锦春, 荣超, 鲍麒, 等. 玻璃窗泄爆下室内燃气爆炸荷载规律试验研究[J]. bob手机在线登陆学报, 2018, 38(增刊2): 75 − 80.

    LIU Jinchun, RONG Chao, BAO Qi, et al. Experimental investigation on indoor gas blast loading with vent glass window[J]. Transactions of Beijing Institute of Technology, 2018, 38(suppl 2): 75 − 80. (in Chinese)
    [16] 聂百胜, 王晔, 王静伟. 圆管内泡沫陶瓷对瓦斯爆炸的抑制特性[J]. bob手机在线登陆学报, 2018, 38(增刊 2): 193 − 197.

    NIE Baisheng, WANG Ye, WANG Jingwei, et al. Inhibitory characteristics of foam ceramics in circular tube on gas explosion[J]. Transactions of Beijing Institute of Technology, 2018, 38(suppl 2): 193 − 197. (in Chinese)
    [17] 曹维福, 曹维政, 张虓雷, 等. 空气低温氧化原油产出气的爆炸极限研究[J]. 西南石油大学学报(自然科学版), 2009, 31(6): 166 − 171.

    CAO Weifu, CAO Weizheng, ZHANG Xiaolei, et al. Study on the explosion limit for the gas produced after air injection low temperature crude oil oxidation[J]. Journal of Southwest Petroleum University (Science& Technology Edition), 2009, 31(6): 166 − 171. (in Chinese)
    [18] 于洪敏, 左景栾, 任韶然, 等. 注空气采油油井产出气体燃爆特性[J]. 中国石油大学学报(自然科学版), 2010, 34(6): 99 − 103.

    YU Hongmin, ZUO Jingluan, REN Shaoran, et al. Explosion characteristics of oil well produced gas by air injection for improved oil recovery[J]. Journal of China University of Petroleum, 2010, 34(6): 99 − 103. (in Chinese)
    [19] 赵利庆, 杨国骏, 李红波, 等. 注空气驱油工艺燃爆试验研究[J]. 油气田地面工程, 2019, 38(9): 12 − 17.doi:10.3969/j.issn.1006-6896.2019.09.003

    ZHAO Liqing, YANG Guojun, LI Hongbo, et al. Experimental study on explosion of air injection oil displacement process[J]. Oil-Gas Field Surface Engineering, 2019, 38(9): 12 − 17. (in Chinese)doi:10.3969/j.issn.1006-6896.2019.09.003
    [20] LI P, LIU Z, LI M, et al. Investigation on the limiting oxygen concentration of combustible gas at high pressures and temperatures during oil recovery process[J]. Energy, 2021, 215: 119157.doi:10.1016/j.energy.2020.119157
  • 加载中
图(10)/ 表(1)
计量
  • 文章访问数:190
  • HTML全文浏览量:61
  • PDF下载量:68
  • 被引次数:0
出版历程
  • 收稿日期:2022-03-04
  • 录用日期:2022-05-25

目录

    /

      返回文章
      返回
        Baidu
        map