中文核心期刊

高校精品期刊Ei收录期刊

Volume 42Issue 2
Jan. 2022
Turn off MathJax
Article Contents
AN Chen, CHENG Zhi, HUANG Xu, SHA Aixue, LI Rong, QIU Ming, DUAN Menglan. Evaluation of Mechanical Properties of TC4 Titanium Alloy Drill Pipe in Corrosive Environment[J]. Transactions of Beijing institute of Technology, 2022, 42(2): 128-134. doi: 10.15918/j.tbit1001-0645.2020.214
Citation: AN Chen, CHENG Zhi, HUANG Xu, SHA Aixue, LI Rong, QIU Ming, DUAN Menglan. Evaluation of Mechanical Properties of TC4 Titanium Alloy Drill Pipe in Corrosive Environment[J].Transactions of Beijing institute of Technology, 2022, 42(2): 128-134.doi:10.15918/j.tbit1001-0645.2020.214

Evaluation of Mechanical Properties of TC4 Titanium Alloy Drill Pipe in Corrosive Environment

doi:10.15918/j.tbit1001-0645.2020.214
  • Received Date:2020-11-21
  • In order to study the adaptability of titanium alloy drill pipe materials to corrosive environments, according to corrosion requirements and test standards in NACE and GB, several processes were carried out. Firstly, some TC4 titanium alloy specimens were corroded and a comparison group without corrosion treatment was set. And then a series of tensile, impact and hardness tests were carried out to study its comprehensive mechanical properties under corrosive conditions. The results show that under the corrosion conditions of NaCl, H 2S, CO 2and 205 ℃, the tensile properties of TC4 titanium alloy decrease by no more than 10%, the impact performance changes by only 0.33%,and the hardness decreases by 3.21%, indicating that TC4 titanium alloy possesses high corrosive resistance, can maintain better comprehensive mechanical properties under corrosive conditions. Taking the requirements of steel drill pipe materials in the API as an index, the mechanical properties of TC4 after corrosion treatment are shown as follows, yield strength, tensile strength and elongation are not lower than that of X grade steel, impact absorption energy is 62% higher than that of API requirement (20 ℃), the hardness exceeds that of G grade steel by about 37%, close to that of S grade steel. Therefore, TC4 titanium alloy can be used in corrosive well drill pipes to avoid or reduce the corrosion failure of the drill pipes.

  • loading
  • [1]
    STEPHEN H, CHIANELLI R. Factors that will influence oil and gas supply and demand in the 21st century[J]. MRS Bulletin, 2008,33:317-323.
    [2]
    张益畅, 孙艳超, 黄胜铭, 等. 海洋石油开发进展研究[J]. 内蒙古石油化工, 2019,45(6):116-118. ZHANG Yichang, SUN Yanchao, HUANG Shengming, et al. Research on the progress of offshore oil development[J]. Inner Mongolia Petrochemical Industry, 2019,45(6):116-118. (in Chinese).
    [3]
    常毓文, 王作乾, 刘保磊, 等. 全球油气开发特征与启示[J]. 国际石油经济, 2018,26(12):58-66. CHANG Yuwen, WANG Zuoqian, LIU Baolei, et al. Characteristics and inspiration of global oil and gas development[J]. International Petroleum Economics, 2018,26(12):58-66. (in Chinese).
    [4]
    邢娜, 何立波, 高真凤, 等. 高酸性腐蚀油气田用镍基合金油套管开发现状[J]. 上海金属, 2013,35(4):63-66. XING Na, HE Libo, GAO Zhenfeng, et al. Development status of nickel-based alloy tubing and casing for high acid corrosion oil and gas fields[J]. Shanghai Metal, 2013,35(4):63-66. (in Chinese).
    [5]
    IANNUZI M, BARNOUSH A, JOHNSEN R. Materials and corrosion trends in offshore and subsea oil and gas production[J]. npj Materials Degradation, 2017,1(1):2-9.
    [6]
    OLAJIRE A. Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors-a review[J]. Journal of Molecular Liquids, 2017,248:775-808.
    [7]
    朱丽娟, 刘永刚, 李方坡, 等. G105钢制钻杆腐蚀失效的原因[J]. 腐蚀与防护, 2016,37(9):775-780. ZHU Lijuan, LIU Yonggang, LI Fangpo, et al. Causes of corrosion failure of G105 steel drill pipe[J]. Corrosion and Protection, 2016,37(9):775-780. (in Chinese).
    [8]
    王显林, 陈长青, 张德旺, 等. Φ127 mm G105型钻杆腐蚀失效分析[J]. 石油矿场机械, 2015,44(10):24-27. WANG Xianlin, CHEN Changqing, ZHANG Dewang, et al. Corrosion failure analysis of Φ127 mm G105 drill pipe[J]. Petroleum Field Machinery, 2015,44(10):24-27. (in Chinese).
    [9]
    李平全, 宋治. 钻杆腐蚀疲劳失效及其预防[J]. 石油钻采工艺, 1990,12(2):39-43. LI Pingquan, SONG Zhi. Drill pipe corrosion fatigue failure and its prevention[J]. Oil Drilling& Production Technology, 1990,12(2):39-43. (in Chinese).
    [10]
    刘光磊. 石油钻柱疲劳腐蚀失效机理及防治措施研究[D]. 北京: 中国石油大学, 2007. LIU Guanglei. Research on fatigue corrosion failure mechanism and prevention measures of petroleum drill strings[D]. Beijing: China University of Petroleum, 2007. (in Chinese).
    [11]
    张毅, 赵鹏. Φ127 mm×9. 19 mm IEU S-135钻杆腐蚀失效分析[J]. 钢管, 2003,32(4):10-16. ZHANG Yi, ZHAO Peng. Corrosion failure analysis of Φ127 mm×9. 19 mm IEU S-135 drill pipe[J]. Steel Pipe, 2003,32(4):10-16. (in Chinese).
    [12]
    BAXTER C, PILLAI S, HUTT G. Advances in titanium risers for FPSO's[C]//Proceedings of Offshore Technology Conference. Houston, Texas: [s. n. ], 1997.
    [13]
    SCHUTZ R W, WATKINS H B. Recent developments in titanium alloy application in the energy industry[J]. Materials Ence & Engineering A, 1998,243(1):305-315.
    [14]
    HILL T H, CHANDLER R B. Field curves for critical buckling loads in curving wellbores[C]//Proceedings of SPE/IADC Drilling Conference. Dallas, Texas: [s. n. ], 1998.
    [15]
    袁文义, 张泉海. 国外钛合金钻杆的研究进展[J]. 新疆石油科技, 2006,16(3):13-15. YUAN Wenyi, ZHANG Quanhai. Research progress of titanium alloy drill pipes abroad[J]. Xinjiang Petroleum Science and Technology, 2006,16(3):13-15. (in Chinese).
    [16]
    SMITH J E, CHANDLER R B, Patrick B L. Titanium drill pipe for ultra-deep and deep directional drilling[C]//Proceedings of SPE/IADC Drilling Conference. Amsterdam, Netherlands: [s. n. ], 2001.
    [17]
    LIU W, BLAWERT C, ZHELUDKEVICH M L, et al. Effects of graphene nanosheets on the ceramic coatings formed on Ti6Al4V alloy drill pipe by plasma electrolytic oxidation[J]. Journal of Alloys and Compounds, 2019,3(6):996-1007.
    [18]
    张业勤, 丁小明, 黄利军, 等. 差示扫描量热法测定钛合金的相变温度[J]. 科技创新与应用, 2020(13):139-141. ZHANG Yeqin, DING Xiaoming, HUANG Lijun, et al. Determination of phase transition temperature of titanium alloy by differential scanning calorimetry[J]. Science & Technology Innovation and Application, 2020(13):139-141. (in Chinese).
    [19]
    张业勤, 颜孟奇, 齐立春, 等. TC27钛合金β转变温度的测定与分析[J]. 分析仪器, 2020(3):88-92. ZHANG Yeqin, YAN Mengqi, QI Lichun, et al. Determination and analysis on the phase transformation temperature of TC27 titanium alloy[J]. Analytical Instrumention, 2020(3):88-92. (in Chinese).
    [20]
    张业勤, 齐立春, 黄利军, 等. TC27钛合金超音速火焰喷涂WC-17Co耐磨涂层工艺研究[J]. 科技创新与应用, 2020(17):120-121. ZHANG Yeqin, QI Lichun, HUANG Lijun, et al. Research on WC-17Co wear-resistant coating process of TC27 titanium alloy by supersonic flame spraying[J]. Technological Innovation and Application, 2020(17):120-121. (in Chinese).
    [21]
    陈孝文, 李仁仆, 张德芬, 等. 氧化时间对钛合金钻杆微弧氧化膜层结构和性能的影响[J]. 材料导报, 2017,31(增刊1):498-501. CHEN Xiaowen, LI Renpu, ZHANG Defen, et al. Effect of oxidation time on structure and properties of micro-arc oxidation film on titanium alloy drill pipe[J]. Materials Review:Nano and New Materials Special, 2017,31(suppl 1):498-501. (in Chinese).
    [22]
    王永夏, 张传涛, 张蓓. 新型钛合金和铝合金钻杆结构安全性分析[J]. 石油矿场机械, 2010,39(12):31-33. WANG Yongxia, ZHANG Chuantao, ZHANG Bei. New type of titanium and aluminum alloy drill pipe of finite element analysis, petroleum field machinery[J]. Oil Field Equipment, 2010,39(12):31-33. (in Chinese).
    [23]
    邵晖, 赵永庆, 曾卫东, 等. α+ β钛合金微观组织对强韧性的影响概述[J]. 稀有金属材料与工程, 2012,41(7):1313-1316. SHAO Hui, ZHAO Yongqing, ZENG Weidong, et al. Overview of the influence of α+ βtitanium alloy microstructure on strength and toughness[J]. Rare Metal Materials and Engineering, 2012,41(7):1313-1316. (in Chinese).
    [24]
    张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化学工业出版社, 2005. ZHANG Xiyan, ZHAO Yongqing, BAI Chenguang. Titanium alloys and applications[M]. Beijing: Chemical Industry Press. 2005. (in Chinese).
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (535) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map