中文核心期刊

高校精品期刊Ei收录期刊

Volume 43Issue 2
Feb. 2023
Turn off MathJax
Article Contents
SUN Pan, WU Xusheng, CAI Jin, YANG Gang, ZHOU Hang, XIE Hailang, ZHANG Xiaochen. Multi-Channel Wireless Shore Power System and Ship-Shore Cooperative Grid Connection Control Research[J]. Transactions of Beijing institute of Technology, 2023, 43(2): 170-177. doi: 10.15918/j.tbit1001-0645.2022.043
Citation: SUN Pan, WU Xusheng, CAI Jin, YANG Gang, ZHOU Hang, XIE Hailang, ZHANG Xiaochen. Multi-Channel Wireless Shore Power System and Ship-Shore Cooperative Grid Connection Control Research[J].Transactions of Beijing institute of Technology, 2023, 43(2): 170-177.doi:10.15918/j.tbit1001-0645.2022.043

Multi-Channel Wireless Shore Power System and Ship-Shore Cooperative Grid Connection Control Research

doi:10.15918/j.tbit1001-0645.2022.043
  • Received Date:2022-03-02
  • Accepted Date:2022-03-02
  • The multi-channel wireless shore power system with both parallel input and output can realize high-power transmission of ship shore power through modular superposition, and solve the problem of single-channel power limitation. However, some parameter differences and disturbances occurred in the process of module production, installation and operation will cause instability of the shore power output voltage and affect the reliable operation of the wireless shore power system. To solve this problem, a circuit topology was proposed firstly for the multi-channel parallel wireless shore power system. And then, taking the inverter phase shift angle as the input and the target load power as the output, a multi-channel parallel wireless shore power system model was established. Using a energy-phase angle method to reduce the system order, a small signal system model was established. Based on the Trapezoidal step bilinear approximation method, a system controller was designed to analyze the parameter differences of the channel coupling, DC input voltage and load disturbance separately. Finally, Matlab simulation and experiment were carried out to validate the control effect under the three disturbance conditions. The results show the better control effect of system controller, which can make a stable operation of the multi-channel shore power system. As a technical support, the proposed method is suitable for high-power wireless design and application of shore power system.

  • loading
  • [1]
    吴旭升, 孙盼, 杨深钦, 等. 水下无线电能传输技术及应用研究综述[J]. 电工技术学报, 2019, 34(8): 1559 − 1568.

    WU Xusheng, SUN Pan, YANG Shenqin, et al. Review on underwater wireless power transfer technology and its application[J]. Transactions of China Electro Technical Society, 2019, 34(8): 1559 − 1568. (in Chinese)
    [2]
    GUIDI G, SUUL J A, JENSET F, et al. Wireless charging for ships: high-power inductive charging for battery electric and plug-in hybrid vessels[J]. IEEE Electrification Magazine, 2017, 5(3): 22 − 32. doi:10.1109/MELE.2017.2718829
    [3]
    马伟明. 舰船综合电力系统中的机电能量转换技术[J]. 电气工程学报, 2015(4): 8 − 16.

    MA Weiming. Electromechanical power conversion technologies in vessel integrated power system[J]. Journal of Electrical Engineering, 2015(4): 8 − 16. (in Chinese)
    [4]
    姜鹏, 孙盼, 彭威. 新型舰船岸电系统研究[J]. 船电技术, 2016, 36(2): 3 − 9.

    JIANG Peng, SUN Pan, PENG Wei. A new shore power system of a warship[J]. Marine Electric & Electronic Engineering, 2016, 36(2): 3 − 9. (in Chinese)
    [5]
    DENG Q, SUN P, HU W, et al. Modular parallel multi-inverter system for high-power inductive power transfer[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9422 − 9434. doi:10.1109/TPEL.2019.2891064
    [6]
    安慧林, 刘国强, 李艳红, 等. 宽频磁耦合谐振式无线电能传输系统谐振器设计[J]. bob手机在线登陆学报, 2019, 39(10): 1069 − 1074+1080.

    AN Huilin, LIU Guoqiang, LI Yanhong, et al. Resonator designer of wireless power transfer system with broadband magnetic coupling property[J]. Transactions of Beijing Institute of Technology, 2019, 39(10): 1069 − 1074+1080. (in Chinese)
    [7]
    高嵩, 国岩, 李新飞, 等. 动力定位船矢量推进器回转动力学响应分析[J]. bob手机在线登陆学报, 2020, 40(11): 1182 − 1189.

    GAO Song, GUO Yan, LI Xinfei, et al. Dynamic response characteristics of hydraulic rotary system for azimuth thruster of dynamic positioning ship[J]. Transactions of Beijing Institute of Technology, 2020, 40(11): 1182 − 1189. (in Chinese)
    [8]
    DENG Q, LIU J, ZARKOWSKI D C, et al. An inductive power transfer system supplied by a multiphase parallel inverter[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7039 − 7048. doi:10.1109/TIE.2017.2686351
    [9]
    麦瑞坤, 陆立文, 李勇. 两逆变器并联IPT系统的环流消除方法研究[J]. 电工技术学报, 2016, 31(3): 8 − 15. doi:10.3969/j.issn.1000-6753.2016.03.002

    MAI Ruikun, LU Liwen, LI Yong. Circulating current elimination of parallel dual-inverter IPT systems[J]. Transactions of China Electro technical Society, 2016, 31(3): 8 − 15. (in Chinese) doi:10.3969/j.issn.1000-6753.2016.03.002
    [10]
    YONG L, MAI R, LU L, et al. Active and reactive currents decomposition-based control of angle and magnitude of current for a parallel multiinverter IPT System[J]. IEEE Transactions on Power Electronics, 2016, 32(2): 1602 − 1614.
    [11]
    HAO H, COVIC G A, BOYS J T. A parallel topology for inductive power transfer power supplies[J]. IEEE Transactions on Power Electronics, 2013, 29(3): 1140 − 1151.
    [12]
    HU H, CAI T, DUAN S, et al. A parallel topology for modularized IPT systems[C]//Proceedings of 2019 IEEE Energy Conversion Congress and Exposition (ECCE). [S. l.]: IEEE, 2019.
    [13]
    LI Y, HU J, LI X F, et al. Efficiency analysis and optimization control for input-parallel output-series wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2020, 1(99): 1074 − 1085.
    [14]
    强浩, 黄学良, 谭林林, 等. 基于动态调谐实现感应耦合无线电能传输系统的最大功率传输[J]. 中国科学:技术科学, 2012, 42(7): 830 − 837.

    QIANG Hao, HUANG Xueliang, TAN Linin, et al. Achieving maximum power ttransfer of inductively coupled wireless power transfer system based on dynamic tuning control[J]. Sci China Tech Sci, 2012, 42(7): 830 − 837. (in Chinese)
    [15]
    李阳. 大功率谐振式无线电能传输方法与实验研究[D]. 天津: 河北工业大学, 2012.

    LI Yang. High-power resonant wireless power transmission method and experimental research[D]. Tianjin: Hebei University of Technology , 2012. (in Chinese)
    [16]
    周诗杰. 无线电能传输系统能量建模及其应用[D]. 重庆: 重庆大学, 2012.

    ZHOU shijie. Energy modeling of wireless power transfer system and its application[D]. Chongqing: Chongqing University, 2012. (in Chinese)
    [17]
    王裕, 程志江, 陈星志, 等. 基于线性自抗扰控制的无线电能传输装置设计[J]. 高电压技术, 2021: 1 − 10.

    WANG Yu, CHENG Zhijiang, CHEN Xingzhi, et al. Design of wireless power transmission device based on linear active disturbance rejection control[J]. High Voltage Technology, 2021: 1 − 10. (in Chinese)
    [18]
    LI Y, MAI R, LU L, et al. Analysis and transmitter currents decomposition based control for multiple overlapped transmitters based WPT systems considering cross couplings[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 1829 − 1842. doi:10.1109/TPEL.2017.2690061
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)/Tables(2)

    Article Metrics

    Article views (119) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map