留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同类型环境规制对全要素能源效率的影响

穆献中,周文韬,胡广文

downloadPDF
穆献中, 周文韬, 胡广文. 不同类型环境规制对全要素能源效率的影响[J]. bob手机在线登陆学报(社会科学版), 2022, 24(3): 56-74. doi: 10.15918/j.jbitss1009-3370.2022.3908
引用本文: 穆献中, 周文韬, 胡广文. 不同类型环境规制对全要素能源效率的影响[J]. bob手机在线登陆学报(社会科学版), 2022, 24(3): 56-74.doi:10.15918/j.jbitss1009-3370.2022.3908
MU Xianzhong, ZHOU Wentao, HU Guangwen. Impacts of Different Types of Environmental Regulations’ on Total Factor Energy Efficiency of China[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2022, 24(3): 56-74. doi: 10.15918/j.jbitss1009-3370.2022.3908
Citation: MU Xianzhong, ZHOU Wentao, HU Guangwen. Impacts of Different Types of Environmental Regulations’ on Total Factor Energy Efficiency of China[J].Journal of Beijing Institute of Technology (Social Sciences Edition), 2022, 24(3): 56-74.doi:10.15918/j.jbitss1009-3370.2022.3908

不同类型环境规制对全要素能源效率的影响

doi:10.15918/j.jbitss1009-3370.2022.3908
基金项目:国家自然科学基金面上项目“生产—生活系统循环链接体系下全要素能效提升路径及政策仿真” (72174015)
详细信息
    作者简介:

    穆献中(1966—),男,博士,研究员,博士生导师,E-mail:muxianzhong@bjut.edu.cn

    周文韬(1996—),女,硕士研究生,E-mail:2261606722@qq.com

    通讯作者:

    胡广文(1990—),男,博士,助理研究员,通信作者,E-mail:Huguangwen@live.cn

  • An Energy Sector Roadmap to Carbon Neutrality in China. International Energy Agency. September 2021. https://www.iea.org/reports/an-energy-sector-roadmap-to-carbon-neutrality-in-china。
  • 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要.共产党员网. 2021年3月13日. https://www.12371.cn/2021/03/13/ARTI1615598751923816.shtml。
  • 生态环境部举行2020年6月例行新闻发布会. 中华人民共和国国务院新闻办公室. 2020年6月30日. http://www.scio.gov.cn/xwfbh/gbwxwfbh/xwfbh/hjbhb/document/1683058/1683058.htm。
  • 中图分类号:F224;F206

Impacts of Different Types of Environmental Regulations’ on Total Factor Energy Efficiency of China

  • 摘要:不同类型环境规制会使市场资源配置发生不同转变,进而对全要素能源效率产生不同影响。基于2003—2018年中国省级面板数据,将环境规制分为正式、非正式两种类型并构建综合指标评价体系,运用SBM和共同前沿模型相结合测度考虑地区生产技术差异的全要素能源效率,利用面板门槛和中介效应模型从直接和间接两个维度研究环境规制在促进全国全要素能源效率提升过程中的影响效应。研究发现:正式环境规制对中国全要素能源效率提升发挥积极影响,但当其超过合理阈值时将减弱;非正式环境规制对中国全要素能源效率的影响呈先抑制、后促进的“U形”趋势。正式、非正式环境规制可通过影响技术创新和外商直接投资间接促进全要素能源效率的提高,且非正式环境规制的促进作用更强;产业结构升级在不同类型环境规制影响能源效率过程中存在遮掩效应,且非正式环境规制的遮掩效应更大。因此,应进一步优化环境规制工具,以科学的环境规制政策促进企业创新能力的提升和高质量外商投资的增加,增加全要素能源效率。
    注释:
    1) An Energy Sector Roadmap to Carbon Neutrality in China. International Energy Agency. September 2021. https://www.iea.org/reports/an-energy-sector-roadmap-to-carbon-neutrality-in-china。
    2) 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要.共产党员网. 2021年3月13日. https://www.12371.cn/2021/03/13/ARTI1615598751923816.shtml。
    3) 生态环境部举行2020年6月例行新闻发布会. 中华人民共和国国务院新闻办公室. 2020年6月30日. http://www.scio.gov.cn/xwfbh/gbwxwfbh/xwfbh/hjbhb/document/1683058/1683058.htm。
  • 图 1环境规制对全要素能源效率的影响

    图 2环境规制对全要素能源效率的直接影响

    图 3环境规制对全要素能源效率的间接影响

    图 4模型构建

    图 5全要素能源效率变化趋势

    图 6正式、非正式环境规制门槛值LR检验

    表 1环境规制测度指标体系

    环境规制 指标 单位
    正式环境规制(ER1) 当年地方性环保法规、规章及环境保护标准数
    工业污染源治理投资 亿元
    环境行政处罚案件数
    非正式环境规制(ER2) 环境污染信访数
    人均受教育年限
    承办的环境相关人大及政协建议数
    下载: 导出CSV

    表 22003—2018年中国各省(市)全要素能源效率测算结果年平均值

    东部地区 能源效率平均值 中部地区 能源效率平均值 西部地区 能源效率平均值
    北京 1.000 0 山西 0.283 8 内蒙古 0.375 6
    天津 1.000 0 吉林 0.444 5 广西 0.425 9
    河北 0.467 5 黑龙江 0.739 2 重庆 0.387 7
    辽宁 0.510 7 安徽 0.502 4 四川 0.463 8
    上海 1.000 0 江西 0.435 2 贵州 0.274 0
    江苏 0.683 8 河南 0.504 7 云南 0.374 0
    浙江 0.611 1 湖北 0.567 6 陕西 0.345 2
    福建 0.890 3 湖南 0.521 3 甘肃 0.314 3
    山东 0.632 5 青海 0.269 3
    广东 0.789 9 宁夏 0.191 1
    海南 0.722 5 新疆 0.316 9
    均值 0.755 3 均值 0.499 8 均值 0.339 8
    全国总平均 0.531 6
    下载: 导出CSV

    表 3单位根检验结果

    变量 LLC IPS Fisher-ADF Fisher-PP
    TFE −7.986 5*** −5.360 9*** 118.282 0*** 152.330 0***
    ER1 −7.001 4*** −10.329 7*** 217.957 0*** 578.851 0***
    ER2 −8.639 7*** −10.399 8*** 222.747 0*** 492.402 0***
    TEC −9.671 2*** −7.501 2*** 169.014 0*** 310.357 0***
    INS −12.199 6*** −8.677 3*** 193.375 0*** 211.229 0***
    FDI −5.703 5*** −5.803 2*** 136.266 0*** 233.003 0***
    ENS −11.913 2*** −8.957 3*** 193.664 0*** 306.162 0***
    注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。
    下载: 导出CSV

    表 4协整检验结果

    统计量 t-Statistic Prob.
    ADF −2.714 448 0.003 300
    Residual variance 0.000 054
    HAC variance 0.000 014
    下载: 导出CSV

    表 5固定效应检验结果

    环境规制类型 F检验 Hausman检验
    F P 结论 χ2 P 结论
    正式环境规制 153.10 0.000 0 变截距模型 32.95 0.000 0 固定效应模型
    非正式环境规制 158.11 0.000 0 变截距模型 31.46 0.000 0 固定效应模型
    下载: 导出CSV

    表 6门槛效应检验结果

    门槛变量 门槛个数 F P 10%临界值 5%临界值 1%临界值
    正式环境规制 一门槛 32.85 0.000 0 19.907 5 22.641 3 27.539 7
    二门槛 13.43 0.021 0 10.222 1 12.055 9 14.704 7
    三门槛 5.83 0.991 0 22.889 6 25.498 0 30.512 2
    非正式环境规制 一门槛 26.21 0.002 0 20.308 0 21.676 1 24.638 7
    二门槛 7.17 0.916 0 16.180 0 17.985 4 21.879 4
    三门槛 13.44 0.049 0 11.8856 13.3077 49.4936
    下载: 导出CSV

    表 7门槛估计值与置信区间

    环境规制分类 门槛值 95%的置信区间 环境规制分类 门槛值 95%的置信区间
    正式环境规制 0.037 4 (0.036 4,0.037 6) 非正式环境规制 0.005 8 (0.005 2,0.005 9)
    0.091 3 (0.081 7,0.095 5)
    下载: 导出CSV

    表 8门槛模型回归结果

    变量(正式环境规制) 系数 P 变量(非正式环境规制) 系数 P
    ER1(ER1≤0.0374) 6.160 5*** 0.000 ER2(ER2≤0.005 8) −29.191 9*** 0.000
    ER1(0.0374 2.064 2*** 0.000 ER2(ER2>0.005 8) 0.970 1*** 0.005
    ER1(ER1>0.0913) 0.806 5** 0.009
    TEC 3.823 9*** 0.002 TEC 4.086 1*** 0.000
    INS 2.355 6*** 0.000 INS 2.000 6*** 0.000
    FDI 5.742 4*** 0.000 FDI 5.426 1*** 0.000
    ENS −1.942 9*** 0.000 ENS −1.864 7 0.000
    Constant 0.330 8*** 0.000 Constant 0.417 8*** 0.000
    R2 0.660 8 R2 0.652 0
    F 1 302.560 0 0.000 F 143.040 0 0.000
    注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。
    下载: 导出CSV

    表 9正式、非正式环境规制通过技术创新对全要素能源效率的间接影响

    变量 正式环境规制 非正式环境规制
    TFE(总) TEC TFE TFE(总) TEC TFE
    ER1 0.900 8*** 0.066 9*** 0.633 5***
    (4.08) (5.62) (2.84)
    ER2 1.978 7*** 0.141 7*** 1.515 7***
    (6.07) (8.19) (4.41)
    TEC 3.997 6*** 3.266 3***
    (4.80) (3.83)
    Controls 控制 控制 控制 控制 控制 控制
    Constant 0.429 9*** 0.008 9*** 0.394 5*** 0.366 0*** 0.004 4*** 0.351 8***
    (15.13) (5.80) (13.72) (11.80) (2.65) (11.42)
    Adj-R2 0.587 2 0.430 6 0.605 5 0.603 5 0.467 8 0.614 6
    F检验 171.35 91.55 148.03 183.27 106.26 153.78
    F检验-P (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.0000 )
    中介效应 0.267 3*** 0.46 29***
    SobelZ 3.649(0.000 3) 3.471(0.000 5)
    Goodman-1Z 3.616(0.000 3) 3.450(0.000 6)
    Goodman-2Z 3.683(0.000 2) 3.493(0.000 5)
    中介效应占比 0.296 7 0.234 0
    注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。
    下载: 导出CSV

    表 10技术创新为中介变量时的Bootstrap检验

    Bootstrap检验 正式环境规制 非正式环境规制
    中介效应 0.267 3*** 0.462 9***
    Z检验 3.22 3.39
    百分位置信区间 (0.128 0, 0.460 8) (0.205 4, 0.760 2)
    直接效应 0.633 5** 1.515 8***
    Z检验 2.20 3.63
    百分位置信区间 (0.046 6,1.146 6) (0.790 5, 2.449 9)
    注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。
    下载: 导出CSV

    表 11正式、非正式环境规制通过产业结构升级对全要素能源效率的间接影响

    变量 正式环境规制 非正式环境规制
    TFE(总) INS TFE TFE(总) INS TFE
    ER1 0.453 4** −0.091 6*** 0.633 5***
    (2.03) (−4.17) (2.84)
    ER2 0.882 2*** −0.256 8*** 1.515 7***
    (2.68) (−8.29) (4.41)
    INS 1.9661*** 2.467 2***
    (4.30) (5.19)
    Controls 控制 控制 控制 控制 控制 控制
    Constant 0.422 6*** 0.014 3 0.394 5*** 0.402 9*** 0.020 7*** 0.351 8***
    (14.83) (5.10) (13.72) (13.44) (7.36) (11.42)
    Adj−R2 0.591 0 0.397 3 0.605 5 0.593 6 0.454 1 0.614 6
    F检验 174.03 79.93 148.03 175.88 100.61 153.78
    F检验−P (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0)
    中介效应 −0.180 2*** −0.633 5***
    SobelZ −2.993(0.002 8) −4.399(0.000 0)
    Goodman−1Z −2.952(0.003 2) −4.376(0.000 0)
    Goodman−2Z −3.036(0.002 4) −4.422(0.000 0)
    中介效应占比 −0.397 4 −0.718 0
    注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。
    下载: 导出CSV

    表 12产业结构升级为中介变量时的Bootstrap检验

    Bootstrap检验 正式环境规制 非正式环境规制
    中介效应 −0.180 2*** −0.633 5***
    Z检验 −2.66 −4.06
    百分位置信区间 (−0.340 6, −0.069 7) (−0.970 0, −0.356 1)
    直接效应 0.633 5** 1.515 7
    Z检验 2.20 3.80
    百分位置信区间 (0.052 5, 1.174 3) (0.813 9, 2.342 2)
    注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。
    下载: 导出CSV

    表 13正式、非正式环境规制通过外商直接投资对全要素能源效率的间接影响

    变量 正式环境规制 非正式环境规制
    TFE(总) FDI TFE TFE(总) FDI TFE
    ER1 1.132 6*** 0.082 3*** 0.633 5***
    (4.24) (3.30) (2.84)
    ER2 2.390 3*** 0.147 5*** 1.515 7***
    (5.86) (3.82) (4.41)
    FDI 6.062 7*** 5.928 1***
    (14.95) (14.74)
    Controls 控制 控制 控制 控制 控制 控制
    Constant 0.555 7*** 0.026 6*** 0.394 5*** 0.486 2*** 0.022 7*** 0.351 8***
    (17.21) (8.82) (13.72) (13.70) (6.76) (11.42)
    Constant 0.555 7*** 0.026 6*** 0.394 5*** 0.486 2*** 0.022 7*** 0.351 8***
    (17.21) (8.82) (13.72) (13.70) (6.76) (11.42)
    Adj-R2 0.420 6 0.187 8 0.605 5 0.439 2 0.194 0 0.614 6
    F检验 87.93 28.69 148.03 94.79 29.82 153.78
    F检验-P (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0)
    中介效应 0.499 0*** 0.874 6***
    SobelZ 3.220(0.001 3) 3.701(0.000 2)
    Goodman-1Z 3.214(0.001 3) 3.693(0.000 2)
    Goodman-2 Z 3.227(0.001 2) 3.709(0.000 2)
    中介效应占比 0.440 6 0.365 9
    注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。
    下载: 导出CSV

    表 14外商直接投资为中介变量时的Bootstrap检验

    Bootstrap检验 正式环境规制 非正式环境规制
    中介效应 0.499 0*** 0.874 6
    Z检验 2.62 3.19
    百分位置信区间 (0.142 1, 0.889 1) (0.373 8, 1.448 8)
    直接效应 0.633 5** 1.515 7***
    Z检验 2.20 3.82
    百分位置信区间 (0.076 5, 1.207 5) (0.792 9, 2.373 9)
    注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。
    下载: 导出CSV
  • [1] 邵帅, 张可, 豆建民. 经济集聚的节能减排效应: 理论与中国经验[J]. 管理世界, 2019, 35(1): 36-60+226.doi:10.3969/j.issn.1002-5502.2019.01.004
    [2] 李强, 左静娴, 王琰. 环境分权对全要素能源效率的影响: 基于空间杜宾模型的分析[J]. 地域研究与开发, 2019, 38(1): 123-127.doi:10.3969/j.issn.1003-2363.2019.01.023
    [3] 马海良, 董书丽. 不同类型环境规制对碳排放效率的影响[J]. bob手机在线登陆学报(社会科学版), 2020, 22(4): 1-10.
    [4] 史丹, 李少林. 排污权交易制度与能源利用效率: 对地级及以上城市的测度与实证[J]. 中国工业经济, 2020(9): 5-23.doi:10.3969/j.issn.1006-480X.2020.09.001
    [5] DASGUPTA P S, HEAL G M. Economic theory and exhaustible resources: renewable resources[M]. New York:Cambridge University Press, 1980: 113−152.
    [6] 李怡娜, 叶飞. 制度压力、绿色环保创新实践与企业绩效关系: 基于新制度主义理论和生态现代化理论视角[J]. 科学学研究, 2011, 29(12): 1884-1894.
    [7] 吴磊, 贾晓燕, 吴超, 等. 异质型环境规制对中国绿色全要素生产率影响研究[J]. 中国人口·资源与环境, 2020(10): 82-92.
    [8] 周海华, 王双龙. 正式与非正式的环境规制对企业绿色创新的影响机制研究[J]. 软科学, 2016, 30(8): 47-51.
    [9] JORGENSON D W, WILCOXEN P J. Intertemporal general equilibrium modeling of U. S. environmental regulation[J]. Journal of Policy Modeling, 2004, 12(4): 715-744.
    [10] NASO P, HUANG Y, SWANSON T. The porter hypothesis goes to China: spatial development, environmental regulation and productivity[J/OL]. CIES Research Paper Series, 2017, 53. https://econpapers.repec.org/paper/giiciesrp/cies_5frp_5f53.htm.
    [11] 游伟民. 环境规制对中美贸易影响的实证分析[J]. 经济问题, 2010(10): 58-61.
    [12] 游达明, 张杨, 袁宝龙. 财政分权与晋升激励下环境规制对产业结构升级的影响[J]. 吉首大学学报(社会科学版), 2019, 40(2): 21-32.
    [13] 陈海跃. 中国区域能源效率及其影响因素分析: 基于DEA-Malmquist模型[J]. 贵州财经大学学报, 2017(6): 32-39.doi:10.3969/j.issn.1003-6636.2017.06.003
    [14] TONE K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3): 498-509.doi:10.1016/S0377-2217(99)00407-5
    [15] MENG F, SU B, THOMSON E, et al. Measuring China’s regional energy and carbon emission efficiency with DEA models: a survey[J/OL]. Applied Energy, 2016, 183(1): 1-21.https://www.sciencedirect.com/science/article/pii/S0306261916312673.
    [16] 陈平, 罗艳. 中国工业生态全要素能源效率异质性研究: 基于SBM-Undesirable和Meta-frontier模型的分析[J]. 商业研究, 2017(4): 154-160.
    [17] 彭代彦, 张俊. 环境规制对中国全要素能源效率的影响研究: 基于省际面板数据的实证检验[J]. 工业技术经济, 2019, 38(2): 59-67.doi:10.3969/j.issn.1004-910X.2019.02.008
    [18] CURTIS E M, LEE J M. When do environmental regulations backfire? Onsite industrial electricity generation, energy efficiency and policy instruments[J]. Journal of Environmental Economics and Management, 2019, 96: 174-194.doi:10.1016/j.jeem.2019.04.004
    [19] DIRCKINCK-HOLMFELD K. The options of local authorities for addressing climate change and energy efficiency through environmental regulation of companies[J]. Journal of Cleaner Production, 2015, 98(1): 175–184.
    [20] 尤济红, 高志刚. 政府环境规制对能源效率影响的实证研究: 以新疆为例[J]. 资源科学, 2013, 35(6): 1211-1219.
    [21] 高志刚, 尤济红. 环境规制强度与中国全要素能源效率研究[J]. 经济社会体制比较, 2015(6): 111-123.
    [22] WU H T, HAO Y, REN S Y. How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China[J]. Energy Economics, 2020, 91: 104880.doi:10.1016/j.eneco.2020.104880
    [23] 张华, 王玲, 魏晓平. 能源的“波特假说”效应存在吗?[J]. 中国人口·资源与环境, 2014, 24(11): 33-41.doi:10.3969/j.issn.1002-2104.2014.11.005
    [24] 王腾, 严良, 何建华等. 环境规制影响全要素能源效率的实证研究: 基于波特假说的分解验证[J]. 中国环境科学, 2017(4): 1571-1578.doi:10.3969/j.issn.1000-6923.2017.04.046
    [25] XIE R H, YUAN Y J, HUANG J J. Different types of environmental regulations and heterogeneous influence on energy efficiency in the industrial sector: evidence from Chinese provincial data[J/OL]. Ecological Economics, 2017, 132:104−112. https://www.sciencedirect. com/science/article/pii/S0921800916302804.
    [26] PAN X F, AI B W, LI C Y, et al. Dynamic relationship among environmental regulation, technological innovation and energy efficiency based on large scale provincial panel data in China[J]. Technological Forecasting and Social Change, 2019, 144: 428-435.doi:10.1016/j.techfore.2017.12.012
    [27] 叶红雨, 李奕杰. 异质性环境规制对中国全要素能源效率的影响研究[J]. 资源开发与市场, 2020, 36(7): 688-694.doi:10.3969/j.issn.1005-8141.2020.07.004
    [28] 李颖, 徐小峰, 郑越. 环境规制强度对中国工业全要素能源效率的影响: 基于2003—2016年30省域面板数据的实证研究[J]. 管理评论, 2019, 31(12): 40-48.
    [29] 侯洋. 环境规制对能源效率的影响研究[D]. 昆明: 云南财经大学, 2020.
    [30] 李德山, 张郑秋. 环境规制对城市绿色全要素生产率的影响[J]. bob手机在线登陆学报(社会科学版), 2020, 22(4): 39-48.
    [31] PARGAL S, WHEELER D. Informal Regulation of Industrial Pollution in Developing Countries: Evidence from Indonesia[J]. Journal of Political Economy, 1996, 104(6): 1314-1327.doi:10.1086/262061
    [32] 原毅军, 谢荣辉. 环境规制的产业结构调整效应研究: 基于中国省际面板数据的实证检验[J]. 中国工业经济, 2014(8): 57-69.
    [33] PORTER M E, LINDE C. Toward A New Conception of the Environment-Competitiveness Relationship[J]. Journal of Economic Perspectives, 1995, 9(4): 97-118.doi:10.1257/jep.9.4.97
    [34] OUYANG X L, ZHUANG W X, SUN C W. Haze, health, and income: An integrated model for willingness to pay for haze mitigation in Shanghai, China[J/OL]. Energy Economics, 2019, 84: 104535.https://www.sciencedirect.com/science/article/pii/S0140988319303305.
    [35] 李虹, 邹庆. 环境规制、资源禀赋与城市产业转型研究: 基于资源型城市与非资源型城市的对比分析[J]. 经济研究, 2018, 53(11): 182-198.
    [36] 肖兴志, 徐信龙. 区域创新要素的配置和结构失衡: 研究进展、分析框架与优化策略[J]. 科研管理, 2019, 40(10): 1-13.
    [37] 郑晓舟, 郭晗, 卢山冰. 双重环境规制与产业结构调整: 来自中国十大城市群的经验证据[J]. 云南财经大学学报, 2021, 37(3): 1-15.
    [38] 李平, 丁世豪. 进口技术溢出提升了制造业能源效率吗?[J]. 中国软科学, 2019(12): 137-149.doi:10.3969/j.issn.1002-9753.2019.12.012
    [39] KOLSTAD C D, XING Y. Do lax environmental regulations attract foreign investment?[J/OL]. Environmental and Resource Economics, 2002, 21 : 1−22. https://link.springer.com/article/10.1023/A:1014537013353.
    [40] 林伯强, 刘泓汛. 对外贸易是否有利于提高能源环境效率: 以中国工业行业为例[J]. 经济研究, 2015, 50(9): 127-141.
    [41] ZHANG J X, LIU Y M, CHANG Y, et al. Industrial eco-efficiency in China: a provincial quantification using three-stage data envelopment analysis[J/OL]. Journal of Cleaner Production, 2017, 143(1): 238−249. https://www.sciencedirect. com/science/ article/pii/S0959652616321862?via%3Dihub.
    [42] 张军, 吴桂英, 张吉鹏. 中国省际物质资本存量估算: 1952—2000[J]. 经济研究, 2004(10): 35-44.
    [43] 单豪杰. 中国资本存量K的再估算: 1952~2006年[J]. 数量经济技术经济研究, 2008, 25(10): 17-31.
    [44] 钟茂初, 李梦洁, 杜威剑. 环境规制能否倒逼产业结构调整: 基于中国省际面板数据的实证检验[J]. 中国人口·资源与环境, 2015, 25(08): 107-115.doi:10.3969/j.issn.1002-2104.2015.08.014
    [45] 蔡海亚, 赵永亮, 焦微玲. 环境规制对制造业价值链攀升的影响效应[J]. bob手机在线登陆学报(社会科学版), 2020, 22(6): 11-19.
    [46] 徐盈之, 魏瑞. 双重环境规制、能源贫困与包容性绿色发展[J]. 中南大学学报(社会科学版), 2021, 27(2): 109-125.doi:10.11817/j.issn.1672-3104.2021.02.011
    [47] 石奕琛. 环境规制、行业异质性与出口技术复杂度[D]. 杭州: 浙江大学, 2021.
    [48] 沈宏亮, 金达. 非正式环境规制能否推动工业企业研发: 基于门槛模型的分析[J]. 科技进步与对策, 2020, 37(2): 106-114.doi:10.6049/kjjbydc.2019010291
    [49] 陈东景, 冷伯阳. 异质型环境规制对雾霾污染的影响——基于空间杜宾模型[J]. 江汉学术, 2021, 40(4): 54-62.
    [50] 刁心薇, 曾珍香. 环境规制对中国能源效率影响的研究——基于省际数据的实证分析[J]. 技术经济与管理研究, 2020(3): 92-97.doi:10.3969/j.issn.1004-292X.2020.03.016
    [51] 李小胜, 张焕明. 中国碳排放效率与全要素生产率研究[J]. 数量经济技术经济研究, 2016, 33(8): 64-79+161.
    [52] HANSEN B E. Threshold effects in non-dynamic panels: Estimation, testing, and inference[J]. Journal of Econometrics, 1999, 93(2): 345-368.doi:10.1016/S0304-4076(99)00025-1
    [53] 温忠麟. 张雷, 侯杰泰, 刘红云. 中介效应检验程序及其应用[J]. 心理学报, 2004(5): 614-620.
    [54] 温忠麟, 叶宝娟. 中介效应分析: 方法和模型发展[J]. 心理科学进展, 2014, 22(5): 731-745.
  • [1] 林婷.清洁生产环境规制与企业环境绩效. bob手机在线登陆学报(社会科学版), 2022, 24(3): 43-55.doi:10.15918/j.jbitss1009-3370.2022.2998
    [2] 纪玉俊, 王芳.产业集聚、空间溢出与城市能源效率. bob手机在线登陆学报(社会科学版), 2021, 23(6): 13-26.doi:10.15918/j.jbitss1009-3370.2021.4401
    [3] 陈浩, 罗力菲.环境规制对经济高质量发展的影响及空间效应. bob手机在线登陆学报(社会科学版), 2021, 23(6): 27-40.doi:10.15918/j.jbitss1009-3370.2021.7783
    [4] 杨洁, 张茗, 刘运材.碳信息披露如何影响债务融资成本——基于债务违约风险的中介效应研究. bob手机在线登陆学报(社会科学版), 2020, 22(4): 28-38.doi:10.15918/j.jbitss1009-3370.2020.2236
    [5] 马海良, 董书丽.不同类型环境规制对碳排放效率的影响. bob手机在线登陆学报(社会科学版), 2020, 22(4): 1-10.doi:10.15918/j.jbitss1009-3370.2020.3748
    [6] 蔡海亚, 赵永亮, 焦微玲.环境规制对制造业价值链攀升的影响效应研究. bob手机在线登陆学报(社会科学版), 2020, (): -.
    [7] 蔡海亚, 赵永亮, 焦微玲.环境规制对制造业价值链攀升的影响效应. bob手机在线登陆学报(社会科学版), 2020, 22(6): 11-19.doi:10.15918/j.jbitss1009-3370.2020.7870
    [8] 李德山, 张郑秋.环境规制对城市绿色全要素生产率的影响. bob手机在线登陆学报(社会科学版), 2020, 22(4): 39-48.doi:10.15918/j.jbitss1009-3370.2020.3705
    [9] 赵领娣, 徐乐.投入产出视角下工业技术创新的环境规制协同效应. bob手机在线登陆学报(社会科学版), 2019, (4): 1-12.doi:10.15918/j.jbitss1009-3370.2019.2596
    [10] 毛建辉, 管超.环境规制、政府行为与产业结构升级. bob手机在线登陆学报(社会科学版), 2019, (3): 1-10.doi:10.15918/j.jbitss1009-3370.2019.2328
    [11] 林小玲, 张凯.房价波动、银行信贷与产业升级——基于银行信贷中介效应检验及区域差异对比分析. bob手机在线登陆学报(社会科学版), 2018, (6): 84-95.doi:10.15918/j.jbitss1009-3370.2018.3562
    [12] 屈文波.环境规制、空间溢出与区域生态效率——基于空间杜宾面板模型的实证分析. bob手机在线登陆学报(社会科学版), 2018, (6): 27-33.doi:10.15918/j.jbitss1009-3370.2018.5179
    [13] 郭高晶.环境约束下中国工业部门能源投入的“拥塞效应”. bob手机在线登陆学报(社会科学版), 2018, (6): 18-26.doi:10.15918/j.jbitss1009-3370.2018.5501
    [14] 王书斌, 檀菲非.环境规制约束下的雾霾脱钩效应——基于重污染产业转移视角的解释. bob手机在线登陆学报(社会科学版), 2017, (4): 1-7.doi:10.15918/j.jbitss1009-3370.2017.2262
    [15] 杨恺钧, 毛博伟, 胡菡.长江经济带物流业全要素能源效率——基于包含碳排放的SBM与GML指数模型. bob手机在线登陆学报(社会科学版), 2016, (6): 54-62.doi:10.15918/j.jbitss1009-3370.2016.0607
    [16] 李荣杰, 张磊, 赵领娣.能源开发、人力资本与全要素能源效率. bob手机在线登陆学报(社会科学版), 2016, (1): 30-37.doi:10.15918/j.jbitss1009-3370.2016.0105
    [17] 茹蕾, 司伟.环境规制、技术效率与水污染减排成本——基于中国制糖业的实证分析. bob手机在线登陆学报(社会科学版), 2015, (5): 15-24.doi:10.15918/j.jbitss1009-3370.2015.0503
    [18] 汪克亮, 孟祥瑞, 杨力, 程云鹤.生产技术异质性与区域绿色全要素生产率增长——基于共同前沿与2000-2012年中国省际面板数据的分析. bob手机在线登陆学报(社会科学版), 2015, (1): 23-31.doi:10.15918/j.jbitss1009-3370.2015.0104
    [19] 赵领娣, 郝青.人力资本和科技进步对能源效率的影响效应——基于区域面板数据. bob手机在线登陆学报(社会科学版), 2013, (1): 19-25,33.
    [20] 李金铠, 沈波, 韩亚峰, 张孟豪.中国区域能源效率比较——基于DEA-Malmquist和聚类分析. bob手机在线登陆学报(社会科学版), 2012, (6): 1-6.
  • 加载中
图(6)/ 表 (14)
计量
  • 文章访问数:281
  • HTML全文浏览量:113
  • PDF下载量:40
  • 被引次数:0
出版历程
  • 收稿日期:2021-12-03
  • 网络出版日期:2022-05-11
  • 刊出日期:2022-05-11

不同类型环境规制对全要素能源效率的影响

doi:10.15918/j.jbitss1009-3370.2022.3908
    基金项目:国家自然科学基金面上项目“生产—生活系统循环链接体系下全要素能效提升路径及政策仿真” (72174015)
    作者简介:

    穆献中(1966—),男,博士,研究员,博士生导师,E-mail:muxianzhong@bjut.edu.cn

    周文韬(1996—),女,硕士研究生,E-mail:2261606722@qq.com

    通讯作者:胡广文(1990—),男,博士,助理研究员,通信作者,E-mail:Huguangwen@live.cn
  • An Energy Sector Roadmap to Carbon Neutrality in China. International Energy Agency. September 2021. https://www.iea.org/reports/an-energy-sector-roadmap-to-carbon-neutrality-in-china。
  • 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要.共产党员网. 2021年3月13日. https://www.12371.cn/2021/03/13/ARTI1615598751923816.shtml。
  • 生态环境部举行2020年6月例行新闻发布会. 中华人民共和国国务院新闻办公室. 2020年6月30日. http://www.scio.gov.cn/xwfbh/gbwxwfbh/xwfbh/hjbhb/document/1683058/1683058.htm。
  • 中图分类号:F224;F206

摘要:不同类型环境规制会使市场资源配置发生不同转变,进而对全要素能源效率产生不同影响。基于2003—2018年中国省级面板数据,将环境规制分为正式、非正式两种类型并构建综合指标评价体系,运用SBM和共同前沿模型相结合测度考虑地区生产技术差异的全要素能源效率,利用面板门槛和中介效应模型从直接和间接两个维度研究环境规制在促进全国全要素能源效率提升过程中的影响效应。研究发现:正式环境规制对中国全要素能源效率提升发挥积极影响,但当其超过合理阈值时将减弱;非正式环境规制对中国全要素能源效率的影响呈先抑制、后促进的“U形”趋势。正式、非正式环境规制可通过影响技术创新和外商直接投资间接促进全要素能源效率的提高,且非正式环境规制的促进作用更强;产业结构升级在不同类型环境规制影响能源效率过程中存在遮掩效应,且非正式环境规制的遮掩效应更大。因此,应进一步优化环境规制工具,以科学的环境规制政策促进企业创新能力的提升和高质量外商投资的增加,增加全要素能源效率。

注释:
1) An Energy Sector Roadmap to Carbon Neutrality in China. International Energy Agency. September 2021. https://www.iea.org/reports/an-energy-sector-roadmap-to-carbon-neutrality-in-china。
2) 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要.共产党员网. 2021年3月13日. https://www.12371.cn/2021/03/13/ARTI1615598751923816.shtml。
3) 生态环境部举行2020年6月例行新闻发布会. 中华人民共和国国务院新闻办公室. 2020年6月30日. http://www.scio.gov.cn/xwfbh/gbwxwfbh/xwfbh/hjbhb/document/1683058/1683058.htm。

English Abstract

穆献中, 周文韬, 胡广文. 不同类型环境规制对全要素能源效率的影响[J]. bob手机在线登陆学报(社会科学版), 2022, 24(3): 56-74. doi: 10.15918/j.jbitss1009-3370.2022.3908
引用本文: 穆献中, 周文韬, 胡广文. 不同类型环境规制对全要素能源效率的影响[J]. bob手机在线登陆学报(社会科学版), 2022, 24(3): 56-74.doi:10.15918/j.jbitss1009-3370.2022.3908
MU Xianzhong, ZHOU Wentao, HU Guangwen. Impacts of Different Types of Environmental Regulations’ on Total Factor Energy Efficiency of China[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2022, 24(3): 56-74. doi: 10.15918/j.jbitss1009-3370.2022.3908
Citation: MU Xianzhong, ZHOU Wentao, HU Guangwen. Impacts of Different Types of Environmental Regulations’ on Total Factor Energy Efficiency of China[J].Journal of Beijing Institute of Technology (Social Sciences Edition), 2022, 24(3): 56-74.doi:10.15918/j.jbitss1009-3370.2022.3908
  • 双碳战略的提出将引发中国全社会能源利用模式的深度变革,从根本上转变生产生活方式。相较于发达国家,中国面临更大的削峰压力、更短的实现周期以及更艰巨的发展任务,这不仅依赖于能源系统零碳化、工业流程再造、负碳技术以及集成耦合与优化等技术领域的不断突破,也需要配套的政策机制支持。据IEA(International Energy Agency)预测,中国电力、工业、交通系统实现深度脱碳仍需要15~20年时间,因此短期内能效提升带来的减排效益远大于能源脱碳,也是实现高质量达峰的重要措施,提升能源效率仍是近期内实现节能减排的主要手段之一。

    改革开放初期,中国高能耗、低效率的粗放型发展模式在大量消耗能源的同时造成环境不断恶化。2019年中国能源消费量在全球能源消费量中的占比达到24.3%,在净增量中占比超过75%[1]。然而,能源的稀缺性、环境污染的负外部性等问题使得仅依赖市场难以完成节能减排、提高能源效率的目标,因此必须通过环境规制来弥补市场失灵缺陷。中国共产党第十八届中央委员会第三次全体会议指出,要加大对环境保护管理制度的改革力度,核心是环境政策的制定与实施[2]。“十四五”规划提出“能源资源配置更加合理、利用效率大幅提高,生态环境持续改善”的发展目标。截至2020年6月底,中国累计发布了2 140项环境标准 ,涉及空气、水、土壤等方方面面,为改善环境质量提供了有力支撑

    环境规制作为政府进行宏观调控经济发展与生态环境平衡的重要手段,不同类型的规制工具及其组合会使市场的资源配置发生不同转变,进而对环境产生不同的影响[3]。一些学者的研究表明,环境规制对于能源效率提升也存在一定促进作用[4]。然而,在经济理论中能源效率作为一种衡量技术投入要素的指标,其通常无法直接测量,而是通过经济产出、能源投入等其他要素进行间接测算,以此全面反映能源与经济间的关系,得出全要素能源效率。因此环境规制对全要素能源效率的影响更多是通过对能源资源投入等因素产生作用,而其对全要素能源效率影响是由于技术进步的结果,抑或是投入端的倒逼机制的作用,有待于深入探究。分析不同类型环境规制与全要素能源效率的关系及其作用机理,对于提高能源利用效率、实现生态文明建设新进步具有重要意义。

    • 环境规制最早由Dasgupta和Heal[5]提出,认为环境规制只是政府为同时兼顾经济与环境制定的政策。随着规制手段发展,有学者从不同角度进行了分类。根据政府行为方式不同,李怡娜和叶飞[6]将环境规制分为强制型环境法律法规和激励型环境法律法规两种。考虑到公众的约束作用,吴磊等[7]将环境规制划分为命令控制型、市场激励型和公众自愿型三种。根据行为主体不同,周海华和王双龙[8]将环境规制分为正式、非正式两种形式,其中正式环境规制包含了以法律法规为主导的命令控制型和以市场调节为主的市场激励型,非正式环境规制与公众自愿型含义类似,反映了公众的环保力量。关于环境规制的测算,主要有定性指标[9]、投入型指标[10]、绩效型指标[11]、综合评价指标[12]四类。综合评价指标克服了定量指标难以量化、投入型和绩效型指标维度单一的缺点,可以更全面地反映环境规制水平。

    • 全要素能源效率测算主要有SFA(Stochastic Frontier Approach)与DEA(Data Enveloment Analysis)两种方法。在输入输出变量不只一个时,DEA比SFA更适用。陈海跃[13]利用DEA-Malmquist模型测算中国省级层面全要素能源效率,并分析区域差异及动态变化特征。但传统的DEA方法只能从输入或输出的角度出发,无法充分考虑输入输出变量的松弛问题。Tone[14]提出非径向、非角度的SBM模型,克服了上述限制,且可以包含非期望产出,从而获得更准确的效率度量。Meng等[15]使用目前六种主流DEA方法测算中国能源效率,结果表明基于松弛变量的SBM(Slacks-based Model)评估中分析能力更强,但SBM模型仍未考虑不同地区生产技术异质性问题,测算结果是有偏的,而共同前沿方法可以有效解决这一问题。陈平和罗艳[16]采用SBM模型和共同前沿生产函数结合,获得了更准确的效率度量。

    • 1.环境规制对全要素能源效率的直接影响

      关于直接影响的研究,主要有三类观点:第一类为促进论。认为环境规制可以提高全要素能源效率,如彭代彦和张俊[17]、Curtis和Lee[18]认为,环境规制对全要素能源效率产生显著正向影响。第二类为抑制论。认为环境规制会对全要素能源效率产生负面影响,如Dirckinck-Holmfeld[19]认为,丹麦政府环境许可和禁令框架相对模糊,无法有效提高能源效率;尤济红和高志刚[20]发现政府环境规制可以阻碍全要素能源效率的提升,并且在滞后三期时仍然显著。第三类观点认为环境规制对全要素能源效率的影响不确定。如高志刚和尤济红[21]、Wu等[22]均认为,中国环境规制与全要素能源效率间存在先抑制、后促进的“正U形”关系;张华等[23]认为,两者间存在先促进、后抑制的 “倒U形”关系;王腾等[24]研究发现,环境规制与全要素能源效率间呈 “倒U形”关系,且具有单门限效应,门限值为0.000 2;Guo等[25]研究不同环境规制手段对工业部门全要素能源效率的影响,结果表明命令控制型和市场激励型环境规制与全要素能源效率间均存在非线性关系。

      2.环境规制对全要素能源效率的间接影响

      目前关于间接影响的研究,主要集中在技术创新单一机制。Pan等[26]利用SVAR模型研究中国环境规制、技术创新和能源效率间的关系,结果发现,市场激励型规制手段可通过提升技术创新水平间接地驱动能源效率提高。叶红雨和李奕杰[27]运用系统GMM方法分析正式及非正式环境规制对能源效率的影响并检验技术创新的调节作用,结果表明,正式与非正式环境规制与中国全要素能源效率均呈“正U形”关系,技术创新对非正式环境规制起正向调节作用。李颖等[28]从技术创新、产业结构、对外开放三个角度对环境规制的作用机制进行了理论分析,但并未区分环境规制类型且未使用实证对这种作用机制进行论证。

      综上所述,关于环境规制对能源效率影响的研究已取得一定成果,但依然存在以下几方面的不足:(1)环境规制的量化方式标准不统一,大多研究只考虑了政府主导的正式环境规制,或将正式环境规制与社会公众主导的非正式环境规制综合成一个指标进行研究,并未对两者进行区分;(2)大多文献采用非期望产出SBM模型测算全要素能源效率,忽略了不同地区之间生产技术的差异性,导致测算结果不准确;(3)大多研究只考虑了环境规制对能源效率间的线性关系或仅在回归方程中加入平方项来识别非线性关系,而未对“拐点”值进行识别;(4)现有研究大多集中在环境规制对能源效率的直接影响方面,对于环境规制对能源效率的间接作用的研究还较少,另外只考虑了技术创新单一指标的间接影响,而忽略了产业结构升级、外商直接投资等指标的间接影响。

      基于上述分析,本文以前人研究成果为基础,主要进行了以下几个方面的工作:(1)立足于不同类型环境规制,重新构建衡量环境规制水平的指标体系,将其划分为正式和非正式两种类型,分别分析两种类型环境规制的影响;(2)将SBM-Undesirable和Meta-frontier模型结合,把中国划分为东、中、西部三个群组,测量考虑地区生产技术差距的全要素能源效率;(3)利用面板门槛模型,分别以正式环境规制和非正式环境规制作为门槛变量,研究不同类型环境规制对全要素能源效率的非线性直接影响效应;(4)以技术创新、产业结构升级、外商直接投资为中介变量,构建中介效应模型深入探究不同类型环境规制对全要素能源效率的影响机理,重点分析环境规制对全要素能源效率的间接影响效应。

    • 正式和非正式环境规制手段对于提升全要素能源效率的作用路径和影响机制存在差异。本文一方面综合考量了正式和非正式环境规制手段在强制力度、作用对象上的差异,并基于此引申出直接影响和间接影响对于全要素能源效率提升的作用路径和影响机制的分析。另一方面考虑到目前研究结论不一致,对于直接影响效应的分析存在“正向”“逆向”“正U形”“倒U形”等不同情况,对于间接影响效应的分析大多集中在技术创新单一路径,本文利用门槛模型判断直接影响效应是否存在非线性关系并对拐点值进行识别,利用中介效应模型分析技术创新、产业结构升级、外商直接投资三条路径的间接影响。

      不同类型环境规制对于全要素能源效率的影响主要体现在两种类型规制对于要素的直接和间接作用。因此,需要首先结合正式和非正式环境规制的作用路径,对其直接和间接影响进行分析,如图1所示。

      图 1环境规制对全要素能源效率的影响

    • 环境规制对于全要素能源效率的直接影响路径如图2所示。

      图 2环境规制对全要素能源效率的直接影响

      1.正式环境规制

      正式环境规制是政府为改善环境质量而制定的规范,具有一定的强制性和可持续性[29]。正式环境规制的施加主要体现在制定污染物排放标准、规定产品生产工艺符合环保要求等,增加企业的环保成本和生产成本,企业迫于压力将减少能源消费与污染物排放,因此规制初期通常会取得较显著的成效,促进能源效率的提高。但是随着正式环境规制强度增加,政府的执行成本增加,使得企业面临负担加重:一方面,企业为改进生产设备、流程等将增加环保投资;另一方面,正式环境规制的实施令企业管理和决策行为受到约束,导致管理费用上涨,在生产成本受限的情况下,这会挤占生产性投资,导致企业产出减少,使得能源效率降低。此外,如果企业所需支付环境成本远远大于其所获收益,企业将产生无效用的资源配置,进而导致政策执行过程产生困难,执行效率低下,政府规制失灵甚至抑制能源效率的提高[30]。故提出以下假说:

      假说1.正式环境规制与全要素能源效率存在 “倒U形”关系。

      2.非正式环境规制

      非正式环境规制最早由Pargal和Wheeler[31]提出,指社会团体通过协商、劝告等方式监督企业行为,减少污染排放。公众为拥有更高质量的生活环境,可以通过舆论导向威慑企业污染行为,或采用控告、申诉、举报等手段促使企业改善现有生产方式[32]。但是公民诉求大多基于自身利益,而忽略社会整体效益。有时企业的经营活动完全合法但无法达到非正式环境规制诉求,公众施压会导致企业成本在短期内迅速增加,导致企业产生一部分没有效用的资源配置,经济产出减少,在投入不变的前提下能源效率降低。只有当公众的个人素质与环保意识达到一定水平,基于个人利益诉求与社会整体利益相一致,才能对企业污染行为产生良性影响,进而促进能源效率的增长。此外,非正式环境规制是把企业创新资金分流进社会成本,当其强度较低时企业更倾向于直接缴纳处罚费用,投入环保成本提高但能源消费量保持不变,引起能源效率下降。当其强度达到一定水平,才能对企业形成激励,促使企业淘汰落后产能,提高生产力的同时减少污染物排放,促进能源效率提升。故提出以下假说:

      假说2.非正式环境规制与全要素能源效率存在“正U形”关系。

    • 环境规制对于全要素能源效率的间接影响路径如图3所示。

      图 3环境规制对全要素能源效率的间接影响

      1.技术创新

      环境规制可以通过技术创新对能源效率产生间接影响,存在“遵循成本”和“创新补偿”效应。其中,基于新古典经济学的传统理论认为,环境规制使得企业污染控制成本增加,会挤占生产投资和创新活动,限制了技术创新的发展,导致不利于企业单位产值能耗的降低,进而对能源效率产生负面影响。而“波特假说”理论认为,环境规制的科学设计可以刺激企业进行技术创新,开发绿色技术或产品[33]。因此,它可以部分或完全抵消成本增加,另外还可以产生净收入,产生“创新补偿”效果,提高企业生产力,使得单位能耗产值或单位产值能耗增加,对能源效率产生正向影响。环境规制对能源效率的影响方向如何,取决于“遵循成本”和“创新补偿”效应何者居于主要地位。故提出以下假说:

      假说3.环境规制可以通过技术创新路径对全要素能源效率产生间接影响,但方向不确定。

      2.产业结构升级

      产业结构升级是实现经济和环境绩效协调发展,提升能源效率的重要途径[34]。产业结构升级一方面可以促进经济发展,提高经济产出;另一方面可以使得能源密集型产业向非能源密集型产业演变,减少能源消耗,促进能源效率的发展。环境规制可影响产业结构升级,具有壁垒效应、消费结构调节效应、约束效应和产业转移效应:其一,环境规制会影响产业进入壁垒,限制高耗能、高污染产业的进入,进而促进产业结构升级[35]。同时,政府会给予一些企业财政补贴,比如对可再生和清洁能源企业的税收优惠政策,重新分配市场份额,形成新的产业分布格局[36]。另外,环境规制可以提高人们对绿色消费的认识,刺激绿色需求,优化企业生产行为,发展清洁产业,实现产业结构升级。其二,环境规制政策的颁布及实施会消耗大量财力物力,引致资源从生产研发领域转移到环境治理领域,机会成本增加,挤占了企业开发清洁生产技术或绿色项目的投资,对资源的最优化配置产生负面影响,不利于产业结构升级。同时,环境规制会对企业的行为决策造成约束,比如企业在厂址定位、产品生产、工序更新等方面必须考虑环境问题,不利于企业资源的最优化利用,阻碍产业结构升级[37]。另外,高强度环境规制地区的高污染企业将选择向低强度地区转移,迁入地产业结构恶化,且为弥补搬迁过程成本损失,企业将倾向于在原有污染项目基础上扩大生产,整体来看不利于产业结构的优化升级。故提出以下假说:

      假说4.环境规制可以通过产业结构升级路径对全要素能源效率产生影响,但方向不确定。

      3.外商直接投资

      外商直接投资将资本、技术和制度因素进行整合,可以发挥技术溢出效应,并通过工业和技术结构以及东道国的经济规模来影响当地能源效率[38]。环境规制提高了外商直接投资的进入门槛,通过市场准入、技术和排放标准、污染税费和绿色产品认证等筛选外商直接投资的流入[39]:一方面,环境规制增加了外资企业的环境治理成本和原材料采购成本,挤压了这些企业的研发和管理投入,导致外资企业经济产出减少,能源效率降低;同时,不利于发挥企业间分工产生的先进技术及管理知识的溢出效应和示范效应,无法对内资企业形成正向激励促进其节能减排,不利于能源效率的提高[40]。另一方面,政府的环境管制行为将限制高耗能产业的进入,公众环保意识的增强会对外资企业污染产品进行抵制,从而吸引高质量的外国投资,这将减少外资企业的能源消耗和污染排放,在产出不变的条件下提高能源效率;同时,为东道国带来先进的生产和管理技术,有利于发挥技术溢出效应,增强该地区的技术创新能力,进而实现环境规制的节能减排效果[41]。因此,环境规制对能源效率的影响将随该地区外商直接投资质量的变化而变化。故提出以下假说:

      假说5.环境规制可以通过外商直接投资路径对全要素能源效率产生影响,但方向不确定。

    • 本文选择全国30个省份(考虑到数据的可获得性,不含西藏及港澳台地区)2003—2018年面板数据为研究样本,数据来源于2004—2019年《中国统计年鉴》《中国劳动统计年鉴》《中国能源统计年鉴》《中国环境年鉴》《中国环境统计年鉴》《中国固定资产统计年鉴》及各省统计年鉴。具体指标说明如下:

      1.全要素能源效率测算指标

      1)投入指标

      (1)劳动力,以各省城镇单位、私营企业及个体年末就业人数之和表示;(2)能源消费,以各省折算成标准煤的能源消费总量表示;(3)资本存量,本文参考张军等[42]的做法,利用永续盘存法进行计算

      $$ {K_{i0}} = {K_{it - 1}}(1 - \delta ) + {I_{it}} $$ (1)

      其中, $K_{it}、K_{it-1}$ 分别表示省份 $i$ 在当期和上一期的资本存量; $\delta $ 表示资本折旧率,统一取10.96%; $I_{it}$ 表示省份 $i$ 当期的资本投资,本文用各年固定资产投资额表示,同时为消除价格变动的影响,以2000年为基期,使用固定资产投资价格指数进行平减。

      对于基期资本存量的计算,本文参考单豪杰[43]的研究,计算公式如下

      $$ {K_{i0}} = {I_{i2000}}({\overline g _{i,2000 - 2018}} + \delta ) $$ (2)

      其中, $K_{i0}$ 表示省份 $i$ 在2000年的资本存量; $I_{i2000 }$ 表示省份 $i$ 在2000年的固定资产投资额; $\overline g_{ i,2000 - 2018}$ 表示2000—2018年投资额的平均增长率; $\delta $ 表示资本折旧率。

      2)产出指标

      (1)期望产出,以2000年基期计算所得实际GDP表示;(2)非期望产出,以各地区废水排放中化学需氧量(COD)和废气排放中二氧化硫排放量(SO2)表示。

      2.全要素能源效率影响指标

      1)环境规制

      目前关于环境规制的分类,主要有两种形式:一是分为命令控制型、市场激励型和公众自愿型[7];二是分为正式环境规制与非正式环境规制[8]。本文将环境规制分为正式环境规制和非正式环境规制两种类型:一是因为这种分类方式是根据主体进行分类,可以较好地衡量不同主体约束方式对能源效率产生的影响,其中正式环境规制包含了以法律法规为主导的命令控制型和以市场调节为主的市场激励型,非正式环境规制与公众自愿型含义类似,反映了公众的环保力量。二是因为考虑到指标的一致性和数据的可获得性,现有文献对市场激励型环境规制一般采用排污费进行表示,但该指标自2018年起改为环保税,含义发生变化。之后,选取有代表性的环境规制工具构建指标体系(如表1所示),并采用熵值法予以客观赋权计算,得出综合的两类环境规制指标。

      表 1环境规制测度指标体系

      环境规制 指标 单位
      正式环境规制(ER1) 当年地方性环保法规、规章及环境保护标准数
      工业污染源治理投资 亿元
      环境行政处罚案件数
      非正式环境规制(ER2) 环境污染信访数
      人均受教育年限
      承办的环境相关人大及政协建议数

      正式环境规制主要反映政府强制性,正式环境规制的刻画有多种形式,比如钟茂初等[44]采用SO2去除率、工业烟尘去除率等构建综合指数,蔡海亚等[45]使用污染物排放量进行表示,徐盈之和魏瑞[46]利用工业污染源投资额与增加值比重来表示,石奕琛[47]使用环境保护方面的法规数量作为衡量指标。由于正式环境规制一般是对一定区域内所有企业同时起作用,故从宏观层面对其直接刻画更为准确。因此,本文参考徐盈之和魏瑞、石奕琛[46-47]的研究,并在此基础上构建指标体系,以更为全面地对正式环境规制进行刻画。其中,当年环保法规、规章、环境保护标准数体现了政府对企业环保行为的强制性要求,工业污染源治理投资反映了政府通过市场对企业行为的调控。同时,考虑到环境行政处罚案件数体现了政府对于环境污染行为的处罚力度,可以刻画政策的监督、执行程度,将其纳入指标体系。

      非正式环境规制主要反映社会公众的环保观念、认知、行为等,各学者对于非正式环境规制的刻画并不统一,如原毅军和谢荣辉[32]利用收入水平、受教育程度、人口密度等构建综合指标,沈宏亮和金达[48]利用环境信访频次与人口密度取几何平均数进行表示,陈东景和冷伯阳[49]使用环境方面人大和政协提案数来表示。本文综合各学者的研究,选取环境污染信访数、人均受教育年限及承办的环境相关人大及政协建议数构建非正式环境规制综合指标体系,从公众监督、环保意识和公众参与三个角度进行刻画。其中,环境污染信访数体现了公众对环境污染行为的监督意识;人均受教育年限体现了公众文化程度,通常认为,公众的知识水平和文化层次越高,对环境问题认识越清晰,环保意识越强[50];承办的环境相关人大及政协建议数体现了公众参与环保监管的程度。

      2)中介变量与控制变量

      根据上述理论分析,可知环境规制可以通过影响技术创新、产业结构升级及外商直接投资间接影响全要素能源效率,故本文选取这三个指标作为中介变量进行分析。同时,在研究环境规制对全要素能源效率的直接影响效应时,将这三个指标作为控制变量处理。考虑到能源消费结构对全要素能源效率的重要影响,将其作为控制变量纳入模型。

      (1)技术创新,本文选取R&D经费内部支出占地区生产总值的比重来表示,符号记为TEC;(2)产业结构升级,本文选取第三产业增加值与第二产业增加值之比来表示,符号记为INS;(3)外商直接投资,本文选取外商直接投资占地区生产总值的比重来表示,符号记为FDI,为统一单位,将外商直接投资乘以货币汇率(年平均价)进行转换;(4)能源消费结构,本文选取煤炭消费量占能源消费总量的比重来表示,符号记为ENS。

    • 为准确测算包含非期望产出的中国全要素能源效率,同时考虑不同区域的生产技术差异性,本文运用SBM-Undesirable和Meta-frontier模型进行结合来对全要素能源效率进行测度。为探究不同类型环境规制对全要素能源效率的非线性影响,运用面板门槛模型将整个样本划分为若干子样本,分析直接影响效应。为探究不同类型环境规制通过技术创新、产业结构升级、外商直接投资对全要素能源效率的影响路径,运用中介效应模型计算自变量通过中介变量间接对因变量的影响程度,分析间接影响效应。模型构建如图4所示。

      图 4模型构建

      1.SBM-Undesirable和Meta-frontier模型

      根据对全要素能源效率测算的相关文献分析,本文参照陈平和罗艳[16]的方法,使用SBM-Undesirable和Meta-frontier模型相结合进行测算,充分考虑中国不同区域的生产技术差异,从而获得更为准确的效率度量。

      1)SBM-Undesirable模型

      假设有n个决策单元(DMU),投入变量、期望产出、非期望产出的向量表示分别为 $ x\in {R}^{m}、{y}^{g}\in {R}^{s1}、{y}^{b}\in {R}^{s2} $ 。假定规模报酬不变,非径向非角度的SBM-Undesirable模型为

      $$ {\rho ^*} = \min \dfrac{{1 - \dfrac{1}{m}\displaystyle\sum\limits_{i = 1}^m {\dfrac{{s_i^ - }}{{{x_{i0}}}}} }}{{1 + \dfrac{1}{{{s_1} + {s_2}}}\left( {\displaystyle\sum\limits_{r = 1}^{{s_1}} {\dfrac{{s_r^g}}{{y_{r0}^g}} + \displaystyle\sum\limits_{r = 1}^{{s_2}} {\dfrac{{s_r^b}}{{y_{r0}^b}}} } } \right)}} $$
      $$ \mathrm{s}.\mathrm{t}. \quad \begin{gathered} {x_0} - X{\boldsymbol{\lambda}} + {s^ - } = 0 \hfill \\ y_0^g - {Y^g}{\boldsymbol{\lambda}} + {s^g} = 0 \hfill \\ y_0^b - {Y^b}{\boldsymbol{\lambda}} - {s^b} = 0 \hfill \\ {s^ - } \geqslant 0\;\;\;\;\;\;{s^g} \geqslant 0\;\;\;\;\;\;{s^b} \geqslant 0\;\;\;\;\;\;{\boldsymbol{\lambda}} \geqslant 0 \hfill \\ \end{gathered} $$ (3)

      其中, ${\boldsymbol{\lambda}}$ 代表权重向量; $ {s}^{-}、{s}^{g}、{s}^{b} $ 代表松弛变量;目标函数 ${\rho ^ * }$ 关于 $ {s}^{-}、{s}^{g}、{s}^{b} $ 严格递减,且 $0 < {\rho ^ * } \leqslant 1$ ;当且仅当 ${s^ - } = 0,{s^g} = 0,{s^b} = 0$ ,即 ${\rho ^{\text{*}}}{\text{ = }}1$ 时,决策单元有效;当 $ {s}^{-}、{s}^{g}、{s}^{b} $ 三者中至少有一个不为0,即 ${\rho ^{\text{*}}} < 1$ 时,决策单元无效,存在改进空间[51]

      2)Meta-frontier生产函数

      $x \in {R^m},y \in {R^n}$ 分别为投入与产出向量,包络所有投入与产出的共同技术集合为

      $$ {T}^{\rm{meta}}=\left\{(x,y):x\geqslant 0,y\geqslant 0,x可生产y\right\} $$ (4)

      所对应的生产可能性集为

      $$ {P^{\rm{meta}}}(x) = \left\{ {y:(x,y) \in {T^{\rm{meta}}}} \right\} $$ (5)

      共同技术效率(MTE)等价于共同距离函数

      $$ 0 \leqslant {D^{\rm{meta}}}(x,y) = {\inf _\theta }\left\{ {\theta > 0;(\frac{y}{\theta }) \in {P^{\rm{meta}}}(x)} \right\} = {\rm{MTE}}(x,y) \leqslant 1 $$ (6)

      群组技术集合

      $$ {T}^{k}=\left\{(x,y):x\geqslant 0;y\geqslant 0;在群组k中x可生产y\right\} $$ (7)

      所对应的生产可能性集为

      $$ {P^k}(x) = \left\{ {y:(x,y) \leqslant {T^k}} \right\} $$ (8)

      群组技术效率(GTE)等价于群组距离函数

      $$ 0 \leqslant {D^k}(x,y) = {\inf _\theta }\left\{ {\theta > 0;(\frac{y}{\theta }) \in {P^k}(x)} \right\} = {\rm{GTE}}(x,y) \leqslant 1 $$ (9)

      其中,距离函数 ${D^{\rm{meta}}}$ ${D^k}$ 利用式(3)所示的SBM-Undesirable模型进行测算。

      2.门槛效应模型

      在回归分析中,当系数估计值不稳定时,需要将整个样本划分为若干子样本进行回归,门槛模型可以有效解决这一问题。根据假说1和假说2,环境规制对能源效率的影响会随其强度大小而变化。因此,为识别这种非线性影响关系,本文建立面板门槛模型[52]进行检验。具体模型如下

      $$ {\rm{TFE}}_{it}^{}{\text{ = }}{\mu _i}{\text{ + }}{\beta _1}{\rm{ER1}}{_{it}} \times I(ER{1_{it}} \leqslant {\gamma _1}) + {\beta _2}{\rm{ER1}}{_{it}} \times I({\gamma _1} < {\rm{ER1}}{_{it}} \leqslant {\gamma _2}) + {\beta _3}{\rm{ER1}}{_{it}} \times I({\rm{ER1}}{_{it}} > {\gamma _2}) + \alpha {\rm{Control}}{_{it}} + {\varepsilon _{it}} $$ (10)
      $$ {\rm{TFE}}_{it}^{}{\text{ = }}\mu _i^{'}{\text{ + }}{\phi _1}{\rm{ER2}}{_{it}} \times I({\rm{ER2}}{_{it}} \leqslant {\delta _1}) + {\phi _2}{\rm{ER2}}{_{it}} \times I({\delta _1} < {\rm{ER2}}{_{it}} \leqslant {\delta _2}) + {\phi _3}{\rm{ER2}}{_{it}} \times I({\rm{ER2}}{_{it}} > {\delta _2}) + \lambda {\rm{Control}}{_{it}} + \varepsilon _{it}^{'} $$ (11)

      其中,it分别表示时间和地区;TFEit表示全要素能源效率;ER1it、ER2it分别表示正式、非正式环境规制;Controlit表示控制变量;I(•)为示性函数,当括号内表达式为假时取值为0,反之取1;μi为个体固定效应;εit为随机误差项。

      3.中介效应模型

      中介效应模型用来检验自变量通过某一特定变量对因变量产生的影响。根据上文理论分析,环境规制可以分别通过影响技术创新、产业结构升级、外商直接投资对全要素能源效率产生间接影响,即中介效应。故本文参考温忠麟等[53]提出的中介效应检验方法,构建中介效应模型如下

      $$ \begin{aligned} \;\\ {\rm{TFE}}_{it} = {\alpha _1} + \beta {\rm{ER}}_{it}^n + {\gamma _1}{\rm{Control}}{_{it}} + \nu \end{aligned}$$ (12)
      $$ {Z_{it}} = {\alpha _2} + \eta {\rm{ER}}^n + {\gamma _2}{\rm{Control}}{_{it}} + \mu $$ (13)
      $$ {\rm{TFE}}_{it} = {\alpha _3} + \beta '{\rm{ER}}_{it}^n + \lambda {Z_{it}} + {\gamma _3}{\rm{Control}}{_{it}} + \xi $$ (14)

      其中,it分别表示时间和地区;TFEit表示全要素能源效率;ERnit表示环境规制,当n=1时,为ER1正式环境规制,当n=2时,为ER2非正式环境规制;Zit表示中介变量,分别取TEC、INS和FDI;Controlit表示控制变量,当把上述变量中某一个变量设为中介变量时,其他变量即为控制变量;υμξ表示随机误差项。

      根据中介效应检验程序,一是检验环境规制是否显著影响全要素能源效率,系数记为β;二是检验环境规制是否显著影响技术创新、产业结构升级和外商直接投资,系数记为η;三是检验环境规制和中介变量同时对全要素能源效率的影响是否显著,系数记为β’、λ。若βηλ同时通过显著性检验,说明三个变量间存在中介效应;若β’无法通过显著性检验,说明存在完全中介效应,若通过则说明存在部分中介效应。

    • 根据上文所述方法和2003—2018年中国30个省份投入产出数据,利用MAXDEA Pro软件对各省全要素能源效率进行测算,列出测算结果年平均值如表2所示,能源效率年均值的变化趋势如图5所示。

      表 22003—2018年中国各省(市)全要素能源效率测算结果年平均值

      东部地区 能源效率平均值 中部地区 能源效率平均值 西部地区 能源效率平均值
      北京 1.000 0 山西 0.283 8 内蒙古 0.375 6
      天津 1.000 0 吉林 0.444 5 广西 0.425 9
      河北 0.467 5 黑龙江 0.739 2 重庆 0.387 7
      辽宁 0.510 7 安徽 0.502 4 四川 0.463 8
      上海 1.000 0 江西 0.435 2 贵州 0.274 0
      江苏 0.683 8 河南 0.504 7 云南 0.374 0
      浙江 0.611 1 湖北 0.567 6 陕西 0.345 2
      福建 0.890 3 湖南 0.521 3 甘肃 0.314 3
      山东 0.632 5 青海 0.269 3
      广东 0.789 9 宁夏 0.191 1
      海南 0.722 5 新疆 0.316 9
      均值 0.755 3 均值 0.499 8 均值 0.339 8
      全国总平均 0.531 6

      图 5全要素能源效率变化趋势

      整体来看,2003—2018年中国全要素能源效率相对较低,总平均值为0.531 6,中国仍有46.84%的节能潜力。从时间维度看,中国全要素能源效率在2008年以前整体呈上升趋势,而2008年后呈逐年下降趋势,2018年全要素能源效率只有0.466 3,说明目前中国资源浪费较为严重,能源利用率较低,具有较大的提升空间。

      分地区来看,东部地区能源效率均值为0.755 3,高于中部地区和西部地区的0.499 8、0.339 8,东、中、西部分别具有24.47%、50.02%、66.02%的节能潜力。其中,北京、天津、上海的能源效率均达到1,位于生产前沿面上,其次为福建和广东,分别达到0.890 3和0.789 9;而宁夏、青海、山西、甘肃、新疆这5个省份平均值最低,位于0.19~0.32之间。这说明中国能源效率存在较大的地域差异性,东部地区在经济发展水平、技术研发、产业结构层次等方面具有更大优势,因此全要素能源效率相对更高。而中、西部地区长期以来经济增长主要依靠能耗高、污染重的能源产业,技术创新水平较低,产业结构不够合理,导致能源消耗量大且利用率低。从变动趋势看,东、西部整体呈下降趋势,中部整体下降但在2017年时有所回升。经上述分析可知,中国目前大部分省份仍具有较大的全要素能源效率提升空间。

    • 1.环境规制对全要素能源效率的直接影响

      1)单位根与协整检验

      本文所应用计量模型建立在平稳数据变量基础之上,故首先利用单位根检验判断数据的平稳性。分别运用LLC、IPS、Fisher-ADF和Fisher-PP四种方法进行单位根检验,发现将原始变量做一阶差分后序列平稳(如表3所示),说明原始变量是一阶单整的,可进一步进行协整检验。

      表 3单位根检验结果

      变量 LLC IPS Fisher-ADF Fisher-PP
      TFE −7.986 5*** −5.360 9*** 118.282 0*** 152.330 0***
      ER1 −7.001 4*** −10.329 7*** 217.957 0*** 578.851 0***
      ER2 −8.639 7*** −10.399 8*** 222.747 0*** 492.402 0***
      TEC −9.671 2*** −7.501 2*** 169.014 0*** 310.357 0***
      INS −12.199 6*** −8.677 3*** 193.375 0*** 211.229 0***
      FDI −5.703 5*** −5.803 2*** 136.266 0*** 233.003 0***
      ENS −11.913 2*** −8.957 3*** 193.664 0*** 306.162 0***
      注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。

      之后进行协整检验,主要是防止伪回归现象的出现。本文运用Kao检验方法对协整关系进行检验。根据表4的检验结果,Kao检验ADF统计量的t值为−2.714 448,对应P值小于0.01,因此可以判断原始变量间存在协整关系,不会出现伪回归现象。

      表 4协整检验结果

      统计量 t-Statistic Prob.
      ADF −2.714 448 0.003 300
      Residual variance 0.000 054
      HAC variance 0.000 014

      2)固定效应检验

      门槛回归的前提是使用固定效应模型进行估计。本文首先采用F检验来判断采用变截距模型或常截距模型,检验结果如表5所示,得到F统计量分别为153.10和158.11,对应P值均小于0.05,故应采用变截距模型对方程进行估计。之后,利用Hausman检验判断选择固定效应或随机效应模型,得到χ2统计量分别为32.95和31.46,对应P值均小于0.05,判断应使用固定效应模型进行估计。因此,可进一步进行门槛效应检验。

      表 5固定效应检验结果

      环境规制类型 F检验 Hausman检验
      F P 结论 χ2 P 结论
      正式环境规制 153.10 0.000 0 变截距模型 32.95 0.000 0 固定效应模型
      非正式环境规制 158.11 0.000 0 变截距模型 31.46 0.000 0 固定效应模型

      3)门槛效应检验

      本文基于自助法(Bootstrap),通过重复抽样1 000次求得F统计量、对应P值及临界值(如表6所示)。结果显示,正式环境规制对全要素能源效率的影响存在双重门槛效应,其单一门槛和双重门槛分别在1%、5%的显著性水平下显著;非正式环境规制对全要素能源效率的影响存在单一门槛效应,在1%的显著性水平下显著。

      表 6门槛效应检验结果

      门槛变量 门槛个数 F P 10%临界值 5%临界值 1%临界值
      正式环境规制 一门槛 32.85 0.000 0 19.907 5 22.641 3 27.539 7
      二门槛 13.43 0.021 0 10.222 1 12.055 9 14.704 7
      三门槛 5.83 0.991 0 22.889 6 25.498 0 30.512 2
      非正式环境规制 一门槛 26.21 0.002 0 20.308 0 21.676 1 24.638 7
      二门槛 7.17 0.916 0 16.180 0 17.985 4 21.879 4
      三门槛 13.44 0.049 0 11.8856 13.3077 49.4936

      利用LR检验进一步对门槛估计值的真实性进行检验,表7展示了门槛估计值和对应的置信区间,根据门槛值可将正式环境规制划分为ER1≤0.0374、0.03740.0913三个区间,将非正式环境规制划分为ER2≤0.0058、ER2>0.0058两个区间。图6展示了门槛估计值在95%置信区间下的似然比序列图,由图6可知门槛值远小于临界值,证明了估计结果的真实性和有效性。

      表 7门槛估计值与置信区间

      环境规制分类 门槛值 95%的置信区间 环境规制分类 门槛值 95%的置信区间
      正式环境规制 0.037 4 (0.036 4,0.037 6) 非正式环境规制 0.005 8 (0.005 2,0.005 9)
      0.091 3 (0.081 7,0.095 5)

      图 6正式、非正式环境规制门槛值LR检验

      4)估计结果分析

      表8为门槛模型回归结果。其中,前三列为正式环境规制对全要素能源效率影响的回归结果,后三列为非正式环境规制对全要素能源效率影响的回归结果。两个模型F统计量分别为1 302.56、143.04,对应P值均小于0.01,说明方程总体在1%的水平下显著。

      表 8门槛模型回归结果

      变量(正式环境规制) 系数 P 变量(非正式环境规制) 系数 P
      ER1(ER1≤0.0374) 6.160 5*** 0.000 ER2(ER2≤0.005 8) −29.191 9*** 0.000
      ER1(0.0374 2.064 2*** 0.000 ER2(ER2>0.005 8) 0.970 1*** 0.005
      ER1(ER1>0.0913) 0.806 5** 0.009
      TEC 3.823 9*** 0.002 TEC 4.086 1*** 0.000
      INS 2.355 6*** 0.000 INS 2.000 6*** 0.000
      FDI 5.742 4*** 0.000 FDI 5.426 1*** 0.000
      ENS −1.942 9*** 0.000 ENS −1.864 7 0.000
      Constant 0.330 8*** 0.000 Constant 0.417 8*** 0.000
      R2 0.660 8 R2 0.652 0
      F 1 302.560 0 0.000 F 143.040 0 0.000
      注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。

      当正式环境规制强度较低时(ER1≤0.037 4),其每增加1个单位,将引起中国全要素能源效率增加6.160 5;当正式环境规制强度位于中间水平(0.037 4

      对于非正式环境规制,当其强度较低时(ER2≤0.005 8),其每增加1个单位,将引起中国全要素能源效率下降29.191 9;当其强度较高时(ER2>0.005 8),其每增加1个单位,将引起能源效率增加0.970 1,并均在1%的显著性水平下显著。这说明较高强度的非正式环境规制对全要素能源效率的提升更有效。在实施初期,公众诉求更偏向于自身利益,企业的某些经营活动可能完全合法却无法满足公众利益诉求,造成公众的信访或举报,使得企业压力增加,环保成本在短期内迅速上涨,挤占资本投入,经济产出下降,对能源效率产生抑制作用。当非正式环境规制政策实施到一定程度后,公众的个人利益诉求与社会利益愈发趋于一致,环境信访行为将更合理,所提出的人大及政协建议也将更符合实际,对企业行为产生良性影响,同时随着受教育程度的增加,公众环保意识增强,有利于这种良性影响的持续推进,促使企业在不影响经济产出的前提下采取节能减排措施,提高能源效率。分省份来看,2018年除青海非正式环境规制水平0.004在门槛值以下外,其余省份均已跨过门槛值,可对能源效率提升产生正向影响。因而,从非正式环境规制角度对假说2进行了验证。

      控制变量中,TEC、INS、FDI三个变量的回归系数均为正,ENS变量回归系数为负,且在1%的显著性水平下显著,说明技术创新、产业结构升级、外商直接投资均对全要素能源效率产生正向影响,而能源消费结构对能源效率产生负向影响。技术创新可以有效降低能源消费量,提高生产力水平,优化能源消费结构,减少COD、SO2等污染物的排放,进而促进全要素能源效率的提升。在产业结构升级过程中,高能耗、低效益的产业将逐渐被低能耗、高效益的产业取代,另外产业间互动关系的加强使得资源要素配置更加合理,从而有利于提高能源效率。外商直接投资可以为中国带来更先进的技术、设备、管理模式等,刺激能源技术和生产方法的创新,有效提高中国企业的节能技术水平和管理能力,从而对中国能源效率的提高产生正向影响。能源消费结构由煤炭在能源消费总量中的占比来表示,煤炭占比量越大,排放污染物将越多,造成非期望产出增多,抑制全要素能源效率的提高。

      2.环境规制对全要素能源效率的间接影响

      1)技术创新为中介变量

      表9展示了技术创新为中介变量时,环境规制对全要素能源效率的间接影响估计结果。在Sobel检验中,正式环境规制、非正式环境规制对应的SobelZ值分别为3.649、3.471,对应P值均小于0.01,说明中介效应显著。Sobel检验需要假定回归系数的乘积服从正态分布,具有一定的局限性,而Bootstrap检验无须满足这一假定,具有较高的统计效力[54]。故本文进一步运用Bootstrap法,设定重复抽样次数为1 000,检验结果如表10所示。在95%的置信水平下,当正式环境规制为解释变量时,中介效应和直接效应的置信区间分别为(0.128 0,0.460 8)、(0.046 6,1.146 6),当非正式环境规制为解释变量时,中介效应和直接效应的置信区间分别为(0.205 4,0.760 2)、 (0.790 5,2.449 9),置信区间均明显不包含0,说明中介效应和直接效应均显著,即存在部分中介效应。因此对假说3进行了验证。

      表 9正式、非正式环境规制通过技术创新对全要素能源效率的间接影响

      变量 正式环境规制 非正式环境规制
      TFE(总) TEC TFE TFE(总) TEC TFE
      ER1 0.900 8*** 0.066 9*** 0.633 5***
      (4.08) (5.62) (2.84)
      ER2 1.978 7*** 0.141 7*** 1.515 7***
      (6.07) (8.19) (4.41)
      TEC 3.997 6*** 3.266 3***
      (4.80) (3.83)
      Controls 控制 控制 控制 控制 控制 控制
      Constant 0.429 9*** 0.008 9*** 0.394 5*** 0.366 0*** 0.004 4*** 0.351 8***
      (15.13) (5.80) (13.72) (11.80) (2.65) (11.42)
      Adj-R2 0.587 2 0.430 6 0.605 5 0.603 5 0.467 8 0.614 6
      F检验 171.35 91.55 148.03 183.27 106.26 153.78
      F检验-P (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.0000 )
      中介效应 0.267 3*** 0.46 29***
      SobelZ 3.649(0.000 3) 3.471(0.000 5)
      Goodman-1Z 3.616(0.000 3) 3.450(0.000 6)
      Goodman-2Z 3.683(0.000 2) 3.493(0.000 5)
      中介效应占比 0.296 7 0.234 0
      注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。

      表 10技术创新为中介变量时的Bootstrap检验

      Bootstrap检验 正式环境规制 非正式环境规制
      中介效应 0.267 3*** 0.462 9***
      Z检验 3.22 3.39
      百分位置信区间 (0.128 0, 0.460 8) (0.205 4, 0.760 2)
      直接效应 0.633 5** 1.515 8***
      Z检验 2.20 3.63
      百分位置信区间 (0.046 6,1.146 6) (0.790 5, 2.449 9)
      注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。

      进一步分析作用方向并从理论上阐述因果关系。根据中介效应回归结果,正式环境规制每增加一个单位,可通过技术创新这一路径间接引起能源效率增加0.267 3。正式环境规制可对技术创新产生正向影响,其强度每增加1个单位,将引起技术创新水平增加0.066 9,这验证了“波特假说”的成立。政府实施正式环境规制会对企业污染行为形成严格限制,企业为达到环保要求将对生产环节进行优化,采用新技术达到环保标准或避免处罚,形成的“创新补偿”效应大于因治污成本增加挤占创新资金形成的“遵循成本”效应。技术创新可推动全要素能源效率的增长,其每增加1个单位,将引起全要素能源效率增加3.997 6。技术创新一方面可以减少生产过程中的能源损失,促进非能源要素对能源要素的替代,减少能源投入并降低污染物排放,另一方面可以提高生产力水平,促进经济增长,从而提高全要素能源效率。经上述分析可知,正式环境规制与全要素能源效率之间,存在正式环境规制→促进技术创新→提升全要素能源效率的因果链。

      同理,对于非正式环境规制,同样存在类似的因果链,可表示为非正式环境规制→促进技术创新→提升全要素能源效率。根据回归结果,非正式环境规制对全要素能源效率的中介效应弹性系数为0.462 9,大于正式环境规制。这可能是因为中国正式环境规制实施较早,政策已逐步趋于完善,企业在原有技术基础上只需做出部分改善便能满足要求,而非正式环境规制主要体现了公众环保意识的提高与对环保行为监督和参与的增强,这将为企业带来新的挑战,刺激企业进行新的技术革新,对技术创新产生更大的影响作用,从而对全要素能源效率的间接影响效应更明显。在回归结果中,非正式环境规制对技术创新的影响系数为0.1417,是正式环境规制对应系数的两倍多,也说明了非正式环境规制对技术创新更为明显的影响效果。

      2)产业结构升级为中介变量

      表11表12展示了产业结构升级为中介变量时,环境规制对全要素能源效率的间接影响估计结果。在Sobel检验中,正式、非正式环境规制对应的SobelZ值分别为−2.993、−4.399,对应P值均小于0.01,说明中介效应均显著。在Bootstrap检验中,在95%的置信水平下,当正式环境规制为解释变量时,中介效应和直接效应的置信区间分别为(−0.340 6,−0.069 7)、(0.052 5,1.174 3),当非正式环境规制为解释变量时,中介效应和直接效应的置信区间分别为(−0.970 0,−0.356 1)、(0.813 9,2.342 2),置信区间均明显不包含0,说明中介效应和直接效应均显著,即存在部分中介效应。因而,对假说4进行了验证。

      表 11正式、非正式环境规制通过产业结构升级对全要素能源效率的间接影响

      变量 正式环境规制 非正式环境规制
      TFE(总) INS TFE TFE(总) INS TFE
      ER1 0.453 4** −0.091 6*** 0.633 5***
      (2.03) (−4.17) (2.84)
      ER2 0.882 2*** −0.256 8*** 1.515 7***
      (2.68) (−8.29) (4.41)
      INS 1.9661*** 2.467 2***
      (4.30) (5.19)
      Controls 控制 控制 控制 控制 控制 控制
      Constant 0.422 6*** 0.014 3 0.394 5*** 0.402 9*** 0.020 7*** 0.351 8***
      (14.83) (5.10) (13.72) (13.44) (7.36) (11.42)
      Adj−R2 0.591 0 0.397 3 0.605 5 0.593 6 0.454 1 0.614 6
      F检验 174.03 79.93 148.03 175.88 100.61 153.78
      F检验−P (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0)
      中介效应 −0.180 2*** −0.633 5***
      SobelZ −2.993(0.002 8) −4.399(0.000 0)
      Goodman−1Z −2.952(0.003 2) −4.376(0.000 0)
      Goodman−2Z −3.036(0.002 4) −4.422(0.000 0)
      中介效应占比 −0.397 4 −0.718 0
      注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。

      表 12产业结构升级为中介变量时的Bootstrap检验

      Bootstrap检验 正式环境规制 非正式环境规制
      中介效应 −0.180 2*** −0.633 5***
      Z检验 −2.66 −4.06
      百分位置信区间 (−0.340 6, −0.069 7) (−0.970 0, −0.356 1)
      直接效应 0.633 5** 1.515 7
      Z检验 2.20 3.80
      百分位置信区间 (0.052 5, 1.174 3) (0.813 9, 2.342 2)
      注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。

      进一步分析作用方向可知,产业结构升级在正式、非正式环境规制对中国全要素能源效率的影响中存在负向中介效应,即遮掩效应。正式、非正式环境规制每增加1 个单位,将分别引起能源效率下降0.180 2、0.633 5。根据表中回归结果,产业结构升级可对能源效率产生正向促进作用,但两种类型环境规制均会阻碍产业结构升级,导致中介效应为负值。这可能是因为中国中、西部的大部分省份仍以高污染、高能耗产业作为核心竞争力产业,这类产业受环境规制约束较强,环境规制水平的提高将使其面临巨大的污染治理成本,挤占了企业对改造生产工艺或绿色项目的投资,不利于企业完成转型。同时,部分企业会选择搬离环境规制水平较高的区域,向较低环境规制地区转移,使得迁入地产业结构恶化,造成迁出地的虚假升级,整体来看并不利于产业结构升级。产业结构的恶化会导致能源消耗与排放污染物的增加,因此抑制能源效率的提高。故可推断环境规制与全要素能源效率之间,存在正式环境规制→阻碍产业结构升级→抑制全要素能源效率提高,非正式环境规制→阻碍产业结构升级→抑制全要素能源效率提高的两条因果链。对比来看,非正式环境规制通过影响产业结构升级对能源效率的抑制作用更强,这可能是因为非正式环境规制是公众环保意愿的直接反映,无须繁琐的行政程序,作用更加灵敏。

      3)外商直接投资为中介变量

      表13表14展示了外商直接投资为中介变量时,环境规制对全要素能源效率的间接影响估计结果。在Sobel检验中,正式、非正式环境规制作为解释变量的SobelZ值分别为3.220、3.701,对应P值均小于0.01,说明中介效应均在1%的显著性水平下显著。在Bootstrap检验中,在95%的置信水平下,当正式环境规制为解释变量时,中介效应和直接效应的置信区间分别为(0.142 1,0.889 1)、(0.076 5,1.207 5),当非正式环境规制为解释变量时,中介效应和直接效应的置信区间分别为(0.373 8,1.448 8)、(0.792 9,2.373 9),置信区间均明显不包含0,说明中介效应和直接效应均显著,即存在部分中介效应。因而,验证了假说5成立。

      表 13正式、非正式环境规制通过外商直接投资对全要素能源效率的间接影响

      变量 正式环境规制 非正式环境规制
      TFE(总) FDI TFE TFE(总) FDI TFE
      ER1 1.132 6*** 0.082 3*** 0.633 5***
      (4.24) (3.30) (2.84)
      ER2 2.390 3*** 0.147 5*** 1.515 7***
      (5.86) (3.82) (4.41)
      FDI 6.062 7*** 5.928 1***
      (14.95) (14.74)
      Controls 控制 控制 控制 控制 控制 控制
      Constant 0.555 7*** 0.026 6*** 0.394 5*** 0.486 2*** 0.022 7*** 0.351 8***
      (17.21) (8.82) (13.72) (13.70) (6.76) (11.42)
      Constant 0.555 7*** 0.026 6*** 0.394 5*** 0.486 2*** 0.022 7*** 0.351 8***
      (17.21) (8.82) (13.72) (13.70) (6.76) (11.42)
      Adj-R2 0.420 6 0.187 8 0.605 5 0.439 2 0.194 0 0.614 6
      F检验 87.93 28.69 148.03 94.79 29.82 153.78
      F检验-P (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0) (0.000 0)
      中介效应 0.499 0*** 0.874 6***
      SobelZ 3.220(0.001 3) 3.701(0.000 2)
      Goodman-1Z 3.214(0.001 3) 3.693(0.000 2)
      Goodman-2 Z 3.227(0.001 2) 3.709(0.000 2)
      中介效应占比 0.440 6 0.365 9
      注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。

      表 14外商直接投资为中介变量时的Bootstrap检验

      Bootstrap检验 正式环境规制 非正式环境规制
      中介效应 0.499 0*** 0.874 6
      Z检验 2.62 3.19
      百分位置信区间 (0.142 1, 0.889 1) (0.373 8, 1.448 8)
      直接效应 0.633 5** 1.515 7***
      Z检验 2.20 3.82
      百分位置信区间 (0.076 5, 1.207 5) (0.792 9, 2.373 9)
      注:*、**、***分别表示在10%、5%、1%的显著性水平下显著。

      表13可知,外商直接投资在环境规制影响中国全要素能源效率的过程中具有中介效应,弹性系数分别为0.499 0、0.874 6。正式、非正式环境规制对外商直接投资具有正向促进作用,外商直接投资可促进全要素能源效率的提高,因此,正式、非正式环境规制可通过外商直接投资这一路径对全要素能源效率产生正向显著的间接影响。这说明中国环境规制可以吸引较高质量的外商直接投资。环境规制政策的实施可以提高外资企业的进入门槛,促进绿色清洁产业的进入,降低外资企业的能源消耗和污染排放。高质量的外商投资也可为中国带来先进的技术、设备、管理方法等等,发挥技术溢出和示范效应,促进中国企业学习模仿,改进已有技术,提高产量并降低能耗,从而提高全要素能源效率。在这一影响过程中,存在正式环境规制→高质量外商投资→提升能源效率和非正式环境规制→高质量外商投资→提升全要素能源效率这两条因果链。因而,验证了假说5的成立。通过与技术创新路径的对比可以发现,外商直接投资的中介效应更大,这可能是因为外商直接投资也可通过技术创新这一路径影响能源效率,在外商投资发挥的中介效应中,包含了部分技术创新的影响。

      进一步分析中介效应占比可知,在环境规制对全要素能源效率的促进作用中,正式环境规制有29.67%可由技术创新路径进行解释,有44.06%可由外商直接投资路径进行解释;非正式环境规制有23.4%可由技术创新路径解释,有36.59%可由外商直接投资路径解释。正式环境规制中介效应占比大于非正式环境规制,在总的影响效应中,正式环境规制通过中介效应发挥的作用更大。这可能是因为政府在制定政策时往往会全面考虑,更注重对企业的激励,而非正式环境规制反映的是公众直接的环保诉求,更倾向于直接影响企业的生产决策。

    • 本文得到主要结论如下:

      1.正式环境规制对中国全要素能源效率的提高具有正向显著的促进作用且存在双门槛特征,随着正式环境规制强度的增加,对中国全要素能源效率的促进作用将减弱。非正式环境规制对能源效率的影响呈先抑制后促进的“U形”趋势,当非正式环境规制水平跨过门槛值0.005 8时,将促进全要素能源效率的提高。

      2.技术创新在正式、非正式环境规制影响中国全要素能源效率过程中存在部分中介效应,具有正式环境规制(非正式环境规制)→促进技术创新→促进全要素能源效率提高的因果链,且非正式环境规制的促进作用更强。对于不同类型的环境规制,波特假说均成立,“创新补偿”效应大于“遵循成本”效应。技术创新是平衡企业发展和环境保护的重要手段,是提高全要素能源效率的重要措施。

      3.产业结构升级在正式、非正式环境规制影响中国全要素能源效率过程中存在遮掩效应,具有正式环境规制(非正式环境规制)→阻碍产业结构升级→抑制全要素能源效率提高的因果链,且非正式环境规制的抑制作用更强。不同类型环境规制对产业结构升级的阻碍作用大于促进作用。环境规制导致企业成本费用增加,企业或将转移到环境规制较低区域,导致迁入地的产业结构恶化与迁出地产业结构的虚假升级进而抑制能源效率的提高。

      4.外商直接投资在正式、非正式环境规制影响中国全要素能源效率过程中存在中介效应,具有正式环境规制(非正式环境规制)→吸引高质量外商投资→促进全要素能源效率提高的因果链,且非正式环境规制的促进作用更强。不同类型环境规制有利于吸引高质量的外商直接投资,发挥技术溢出效应,促进节能减排技术发展,从而对全要素能源效率的提高具有正向作用。

    • 基于以上研究结论,提出政策启示如下:

      1.适度加强正式环境规制力度。强度过高的正式环境规制对中国全要素能源效率的促进作用将减弱,因此应合理把握正式环境规制政策强度。在制定政策时,应注重发挥市场主体的主观能动性,重点关注政策的执行方式与效果,避免寻租腐败等现象的出现。同时,应健全环境绩效评价和环境监督监管体系,完善实施标准,加强环保监测,形成科学合理的节能减排监管机制。

      2.加强非正式环境规制。强度过低的非正式环境规制将对能源效率的提高产生不利影响,只有当非正式环境规制达到一定强度后才可促进中国全要素能源效率的提高,因此应大力推动非正式环境规制政策的发展。政府一方面应支持和完善非政府环保组织建设,鼓励其通过环保宣传增强公众环境保护意识,促进环保参与主体更加多元化;另一方面应完善环境保护公益诉讼制度,鼓励公众举报企业违法污染行为,将民间力量纳入环境治理机制。

      3.进一步优化环境规制工具,促进企业创新能力提升。环境规制可通过技术创新间接提高中国全要素能源效率。因此,政府应制定并完善税收优惠和财政补贴政策,加大对企业创新的支持,同时建立有利于节能技术与节能产品交易的市场体系,明确技术创新成果产权,促进企业通过开发节能技术提高能源效率。

      4.科学制定环境政策,促进实现资源的最优化配置。实证结果表明目前中国环境规制不利于产业结构升级,以致对全要素能源效率产生负向间接影响。因此,政府在制定环境规制政策时应注重平衡企业经济效益和环境保护的关系,促进企业资源的最优化利用,进一步激励产业结构调整,引导企业从依靠成本与资源优势向依靠品牌与技术优势转变。

      5.优化外商直接投资的引资用资政策,提高外商投资质量。环境规制可通过增加外商直接投资间接促进中国全要素能源效率的提高。因此,政府应给予清洁、高效型外商直接投资合理的政策导向,增强外商直接投资的技术溢出效应, 充分发挥环境规制的间接效应,促进全要素能源效率的提高。

    • 由于论文视角和数据处理局限,论文仍存在一些不足,在未来研究中可进一步展开分析:

      1.本文对环境规制的分类,只分为了正式与非正式两种类型,分类还不够细致。正式环境规制中各种政策对全要素能源效率的作用机制存在差异,非正式环境规制内部各类政策的影响机制也有所不同。在进行结果分析时大致阐述了各项指标的不同影响机理,但这种阐述较为抽象。在未来研究中,可将环境规制作更为细致的分类,并对每项指标进行建模分析,以获得更为具体全面的结果。

      2.本文所使用模型只能说明变量间的相关关系,却不能证明因果关系的存在。为此,本文结合经济理论,分析了环境规制通过影响技术创新、产业结构升级和外商直接投资进而影响能源效率的因果关系,构建因果链。但是,这种分析只能停留在理论层面,在未来研究中还需应用实证进一步验证。针对本文研究内容,可采用追踪研究的方法,间隔一段时间后对自变量、中介变量和因变量进行重复测量,获得历时性数据,验证自变量是否可对后续中介变量产生影响,中介变量是否会对后续因变量产生影响。

参考文献 (54)

目录

    /

      返回文章
      返回
        Baidu
        map